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Abstract

The work presented here is concerned with breaking water waves, a well-known phenomenon arising as an
oceanic wave approaches the shore: its crest starts to move faster than the trough up front, which ultimately
leads to the appearance of an overhanging region that quickly curls over while falling down until it collides
with the water lying below. An important contemporary issue concerns the incorporation of the viscous
dissipation associated with the breaking into the many models that have been introduced to describe the
ocean. This is mostly done empirically.

In the present work, we follow a different path: we aim at modelling wave breaking up to the free surface
self-intersection (the “splash” singularity), relying thus on a more geometrical approach to the subject.

The first part of this thesis will be devoted to the motivation of a set of equations that describes overhang-
ing waves in the inviscid irrotational regime, with either a one-dimensional or a two-dimensional free surface.
This is done by setting aside the commonly used Eulerian framework and working in (pseudo)Lagrangian
coordinates instead. This should be seen as an extension of the Zakharov—Craig—Sulem formulation of the
Water Waves problem. The non-canonical Hamiltonian structure of these partial differential equations is in-
vestigated and it is shown that in the absence of breaking, they can be reduced to the usual set of equations.
Emphasis is put on the various physical assumptions that are made along the way.

In a second moment, we come back to these very hypotheses and put them to the test. This is done
numerically using a Navier-Stokes based computational framework based on the Finite-Element Method
(FEM). The major novelty compared to other studies lies in the use of the Arbitrary Lagrangian—Eulerian
method (ALE), which diminishes the interpolation error greatly. The viscosity can therefore be decreased
to values that allow the comparison with the inviscid solution (computed using another wode, based on
potential theory in the complex plane) to be carried out.

Over a flat topography, it is found that both the free-surface and bed boundary layers are sufficiently
well-behaved as to not perturb the bulk irrotational flow. Water being characterised by a relatively small
viscosity, the consequence is that, in this regime the inviscid models accurately describe the oceanic flow.
We do not prove this assertion rigorously, however.

Difficulties seem to arise, however, when a non-flat topography is considered. Indeed, the typical velocities
associated with the wave are high enough to eventually trigger boundary layer separation near curved-enough
portions of the bed, resulting in vorticity being shed in the initially irrotational flow, far from the topography.
The convergence to the inviscid solution is therefore compromised.
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Résumé

Cette these porte sur le déferlement des vagues océaniques, un phénomene physique que ’on observe
principalement sur les littoraux mais que 1'on trouve aussi dans ’océan lointain. Explicitons la définition
adoptée ici : lorsque les non-linéarités (comprendre 'amplitude) deviennent importantes, la créte d’une vague
peut se mettre a se propager a une vitesse supérieure a celle du creux qui la précede, résultant éventuellement
en un enfourchement de ce dernier. Lorsque cela se produit, nous parlons de déferlement. Le rouleau ainsi
créé tombe immanquablement sur la surface d’eau plus avenante. A partir de 13, une quantité importante de
structures de petite échelle apparaissent (gouttes, écume, turbulence, etc.), conduisant & Paugmentation du
tourbillon (de la vorticité) et, de ce fait, de la dissipation énergétique. Un enjeu scientifique contemporain
consiste en la caractérisation précise de cette dissipation et sa prise en compte dans les modeles océaniques.

Cependant, le travail présenté dans les pages qui suivent n’abordera pas cette facette du probléme. A la
place, nous allons nous intéresser a la dynamique présente avant le recoupement de 'interface par elle-méme
(une singularité que la communauté anglo-saxonne a astucieusement nommé le splash).

Dans un premier temps, nous allons introduire un ensemble d’équations a dérivées partielles qui décrivent
I’évolution de la surface libre de 'océan, ’eau étant considérée comme non-visqueuse, le tourbillon étant
supposé évanescent et lair étant completement négligé. Ces équations, que nous nous proposons d’appeler
équations des vagues déferlantes, sont obtenues formellement a partir de principes physiques généraux (de-
scription continue de la matiére, densité homogene et uniforme de I’eau, etc.). La structure hamiltonienne
non-canonique de ce systéme sera par la suite explicitée. Nous montrerons aussi que, en I’absence de défer-
lement, elles se réduisent a une formulation bien-connue du probléme, dite de Zakharov, Craig et Sulem.

Pour arriver a ce systeme d’équations, deux hypotheéses importantes doivent étre réalisées : négliger
la viscosité et supposer un tourbillon nul. La seconde partie de ce travail consistera en une discussion de
ces dernieres. Pour cela, nous adopterons une approche numérique permettant d’approximer la solution
des équations de Navier—Stokes a surface libre. Le schéma mis au point differe de ceux qu’il est coutume
d’utiliser pour ce probléme. En effet il met en ceuvre la méthode Lagrangien-Eulerien Arbitraire (ALE)
pour I’advection et la discrétisation est réalisée par la Méthode des Eléments Finis (FEM).

Ce schéma numérique sera d’abord utilisé pour étudier la couche limite apparaissant sous 'interface
eau—vide, lorsque le fond de ’eau est plat. Il nous sera alors possible de conclure que le tourbillon ainsi
généré n’empéche nullement la solution de faible viscosité de converger vers la solution irrotationnelle de
I’équation d’Euler, étant donné que son support devient arbitrairement petit.

Par contre, ’étude de topographies non-plate mettra en lumiere un phénomeéne physique absent du
systéme limite : le décollement de la couche limite présente au fond de ’eau. En effet, il peut arriver que
I’écoulement irrotationnel associé au passage d’un train d’onde d’amplitude finie ait une vélocité suffisamment
importante pour venir arracher des tourbillons des régions de forte courbure et les transporter jusqu’a
proximité immédiate de la surface. Ce phénomeéne ne semble pas disparaitre dans la limite de viscosité
évanescente et contrecarre, de ce fait, la convergence vers la solution irrotationnelle.
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Introduction et résumé substantiel en francais

“La mer

Qu’on voit danser le long des golfes clairs
A des reflets d’argent

La mer

Des reflets changeants

Sous la pluie”

“La mer

Au ciel d’été confond
Ses blancs moutons
Awvec les anges si purs
La mer bergére d’azur
Infinie”

Charles Trenet, La Mer (1946)

La modélisation mathématique des vagues (océaniques ou capillaires) et des phénomeénes naturels qui leur
sont associés constitue un travail scientifique de longue haleine, dont il convient de placer 'origine a I'étude
des forces de flottaison par Archimeéde au 111°™€ siécle avant notre aire, et qui se poursuit encore aujourd’hui.
En effet 'océan est un systéme physique d’une grande complexité dont la description par 'approche de la
mécanique des fluides ne peut se faire que par le prisme de modeles réduits obtenus par approximations
successives, échouant de ce fait & capturer la dynamique océanique globale. Pourtant, au regard des enjeux
climatiques contemporains, ’étude de cette derniere se doit d’obtenir une grande attention de la part du
monde académique (TIPCC 2019, 2023). Il a été établi de longue date que 1'océan joue un role prépondérant
dans grand nombre de phénomenes de transport et de régulation climatique.

Une difficulté inhérente a ce probleme est le couplage entre différentes échelles qu’il est difficile de
modéliser conjointement. Par exemple, la dissipation énergétique associée au déferlement (petite échelle) a
un impact non-négligeable sur la dynamique cotiére (échelle moyenne). La mise en place d’un dialogue entre
les différentes dimensions, du point de vue de la modélisation mathématique, est un enjeu contemporain
fascinant (voir par exemple la recension récente de Seenath 2025).

Dans ce travail, nous allons nous intéresser a une facette bien particuliere de la description de la surface
de l'océan, de petite échelle puisqu’il sera rarement question de plus d’une créte de vague a la fois, a savoir
le déferlement des vagues océaniques. L’accent sera mis sur le régime cotier, ou le fond de I’eau joue un
role important sur la dynamique surfacique, mais certaines conclusions (notamment celles du chapitre 2)
trouveront sans souci une généralisation & des profondeurs plus importantes (par rapport & la longueur
d’onde d’une vague).

La majorité des modéles océaniques de petite échelle ne parviennent pas a décrire le déferlement. Pour
cause, il est souvent supposé que l'interface peut étre vue comme le graphe d’une fonction. Adopter un point
de vue lagrangien, c’est-a-dire suivre la trajectoire de chaque élément infinitésimal du fluide plutét que de



s’'intéresser a la vitesse de ce dernier en un point donné, permet de s’affranchir de cette hypothese. Cette
observation a été mis en ceuvre par Longuet-Higgins and Cokelet (1976, 1978) pour I’élaboration du premier
schéma numeérique permettant de simuler des vagues océaniques déferlantes, en supposant la viscosité et
le tourbillon évanescents. Des suites de ce travail important, d’autres auteurs-rices ont mis en place des
schémas numériques avec la méme finalité (citons par exemple Vinje and Brevig (1981), Baker, Meiron,
et al. (1982), Dold et al. (1986) ou encore Grilli et al. (1989)).

Il fallut attendre la fin des années quatre-vingt-dix pour lever I’hypothése d’irrotationnalité dans les méth-
odes numériques et s’intéresser aux effets de la viscosité. En effet supposer un tourbillon évanescent permet
d’utiliser le potentiel de vitesse et ainsi reformuler le probléme avec des variables résidant sur I'interface (et
éventuellement sur le fond) uniquement. Cette réduction de la dimension ne peut plus étre réalisée avec un
fluide visqueux pour lequel le tourbillon ne reste pas nécessairement nul (Longuet-Higgins 1992; Lundgren
and Koumoutsakos 1999). De ce fait, il fallut attendre la puissance informatique nécessaire a la réalisation
de simulations non-linéaires en deux et trois dimensions d’espace pour approximer numériquement la solu-
tion des équations de Navier-Stokes a surface libre. Surprenamment, le schéma d’advection de I'interface
communément adopté est eulerien, mais il n’est jamais supposé que Uinterface est le graphe d’une fonction,
bien entendu. Des exemples de schémas numérique de la sorte sont décris dans les publications de Chen
et al. (1999), Iafrati (2009), Deike, Popinet, et al. (2015), Lubin and Glockner (2015), Deike, Melville, et al.
(2016), Di Giorgio et al. (2022) ou encore Mostert et al. (2022), pour ne citer qu’eux.

L’emploi de ces méthodes numériques ne fut en aucun cas uniquement cosmétique. En effet, Longuet-
Higgins (1978) a par exemple utilisé sa méthode pour mettre en évidence le mécanisme & 'origine du
déferlement: 'instabilité super-harmonique. Cette derniére correspond a un développement exponentiel de
l’amplitude des modes de longueur d’onde plus courte que celle de la vague, ayant pour effet de ralentir le
creux en amont d’une créte, tout en accélérant cette derniere. Le développement de cette instabilité a par
la suite été étudié plus précisément par Tanaka (1983, 1985). Bien que ces études aient été menées en eaux
profondes, Tanaka et al. (1987) ont montré qu’il s’agit aussi d’'un mécanisme présent lorsque le fond joue
un role dans la dynamique.

Le travail que nous présentons ici est scindé en deux parties. Premierement, nous allons présenter une
reformulation des équations d’Euler irrotationnelles & surface libres, adoptant la méme philosophie que celle
de Zakharov (1968), Craig and Sulem (1993), avec une description lagrangienne de l'interface, permettant
ainsi de décrire des vagues déferlantes jusqu’au recoupement de l'interface, en deux et trois dimensions
d’espace. Le cas d’une interface de dimension un ayant déja été traité par Craig (2017), nous n’apportons
qu’une extension de son travail aux surfaces paramétrisées. Dans un second temps, nous allons mettre au
point un schéma numérique pour Péquation de Navier-Stokes & surface libre. A la différence des études déja
citées, I'advection de l'interface passera par I'advection de tout le maillage selon la méthode lagrangien—
eulerien arbitraire (Hirt et al. 1974). Cela permettra de réduire grandement lerreur d’interpolation et ainsi
diminuer la viscosité jusqu’a des valeurs permettant la comparaison avec la solution des équations d’Euler a
surface libre, approximée selon la méthode du dipole décrite, justifiée, implémentée et testée en détails par
Dormy and Lacave (2024). Cette comparaison entre solutions visqueuses et non-visqueuse sera réalisée avec
des conditions de type Navier ou Dirichlet imposées au niveau du fond de ’eau. Nous essaierons de dégager
une loi générale concernant la validité de I'approximation d’irrotationnalité du flot et du bon emploi des
modeles sans viscosité.

Dans une optique d’accessibilité internationale, cette these a été rédigée en anglais. Nous fournissons
tout de méme, dans les quelques pages qui suivent, un résumé détaillé du contenu de chaque chapitre en
francais. Pour assurer la continuité de la lecture, certaines figures seront reproduites a l'identique (avec
toutefois leur légende traduite).

[ Ladescription eulérienne des vagues océaniques

Commencgons simplement par un tour d’horizon des différentes fagons de décrire les écoulements océanique
non-loin des cotes. Cela permettra d’expliciter les approximations généralement faites et de voir apparaitre
les difficultés auxquelles il faudra se confronter afin d’obtenir un ensemble d’équations décrivant les lames
déferlantes.



Hypothése Interprétation physique Traduction mathématique

H1 La matiere est un continuum Modélisation via des EDPs
H2 Les fluides possedent des densités homogenes Incompressibilité (1.2)
H3 L’eau et I’air sont immiscibles T, (t) est une surface de dimension d
H4 L’eau et lair sont newtoniens avec des viscosités (1.7), (1.8)
homogenes
H5 Pas de partie émergée, c’est-a-dire qu’il existe tou- (H5) ou (H5, bis)
jours une couche d’eau entre le sol et I'air
H6 L’eau n’a pas de viscosité (v,, = 0) Le systéeme d’Euler (1.53)
Hr L’air a une densité nulle P, =0
HS8 La vague ne déferle pas T';(t) est le graphe de h(t, Z)
H9 Absence de tension de surface Yo =0
H10 Le fond de leau est représentable par le graphe I') peut étre vu comme b(Z)
d’une fonction constante dans le temps
H11 L’écoulement posséde un tourbillon évanescent w=0

Tableau — Les hypotheses généralement réalisées pour décrire la surface de l'océan. Elles sont toutes
discutées en détails dans la premiere partie de ce travail.

[.1. Le systéeme de Navier-Stokes a surface libre

Considérons un fluide newtonien de viscosité v et densité p homogenes (H2 et H4; les hypotheses qui
serons faites étant résumées dans le tableau ci-dessus), modélisé comme un continuum (H1). L’évolution
conjointe de sa vitesse u et de sa pression p en tout point contenu dans une portion €(¢) de I’espace R+1
(avec d = 1 ou 2 la dimension de l'interface entre I'eau et I'air) est décrite par les équations de Navier et
Stokes, dont la formulation eulérienne est

1
atu—i—u-Vu—l—;Vp:VAu—i—g
V.-u=0,

avec g l'accélération de la pesanteur.

Pour utiliser ces équations dans le cadre d’une description de l'océan dans un régime littoral, un certain
nombre d’hypothéses supplémentaires doivent étre faites. Déja, nous supposons que le domaine Q(t) s’étend
a l'infini dans les directions spatiales horizontales et qu’il est compris entre le fond de 'océan I'y, supposé
fixe, et I'interface entre l'eau et air IT';(¢) (H3, H5). Des représentations schématiques de cette configuration
géométrique sont disponibles en figures 1.6 et 1.7. Les composantes horizontales sont dénotées Z, a 'aide
d’une fleche afin de souligner qu’elles sont de dimension d, tandis que la composante verticale est appelée z.

Dans le cadre eulérien théorique, I’évolution de 'interface entre I’eau et I'air est décrite en supposant que
cette derniére peut étre représentée comme le graphe d’une fonction h(t,z) (H8). L’équation de transport

conduit alors & .
Oh=u-n ol n = {_Yh},

ou il est implicitement entendu que la valeur de w est prise au niveau de linterface z = h(t,Z). Nous
dénotons par V la partie horizontale du gradient et m correspond alors a un vecteur perpendiculaire a la
surface non-normalisé. Un grand nombre d’auteur-rices appellent cette équation la condition cinématique.
Il parait un peu trop réducteur d’utiliser le terme condition étant donné qu’il ne s’agit nullement d’une
contrainte de bords mais d’'une EDP d’évolution se suffisant a elle-méme.

Dans l'intégralité de ce travail, air est considéré comme ayant une densité nulle (H7). Cette hypotheése
peut sembler quelque peu drastique étant donné que le vent est responsable de 'essentiel de la génération
des vagues en haute mer (Janssen 2004). Sur des intervals de temps courts (de 'order de quelques périodes),
cela peut toutefois se justifier. Il conviendra aussi de négliger les effets diis & la tension superficielle (H9),
principalement car il ne s’agit pas du sujet de la présente étude. Dans ce cas particulier, nous ajoutons une
contrainte vectorielle dynamique au niveau de l'interface, a savoir que les contraintes normales s’annulent



au niveau de l'interface,
pn—vp|Vu+ (Vu)'|-n=0  sur[}(?),

avec n le vecteur unitaire normal & l'interface pointant en dehors de I'eau. Notons que cette condition
comporte une partie normale et une partie tangentielle.

Enfin, il reste a prescrire des conditions sur le fond I', afin de clore le systeme. Deux possibilités se
présentent & nous pour ce faire. Il est par exemple commun de supposer que les molécules composant le
fluide sont libres de glisser sur le fond sans contrainte, la condition de glissement ou de Navier. A l'inverse,
on suppose parfois que les molécules adhérent aux parois du fait de la viscosité, ce qui les empéche de se
mouvoir, la condition de non-glissement ou de Dirichlet. Elles se matérialisent par

u-n = 0
nx |Vu+ (Vu)' 0

3
|

} (Navier) u =0 (Dirichlet).

Comme nous le verrons aux chapitres 4 et 5, la premiére engendre bien moins de difficultés que la seconde.
En particulier il existe une vaste littérature mathématique concernant la limite de faible viscosité avec
condition de Navier (sans surface libre), comme par exemple les études de Iftimie and Planas (2006), Iftimie
and Sueur (2011), Masmoudi and Rousset (2012) ou encore Gérard-Varet and Lacave (2013). Cependant,
la condition de Dirichlet semble mieux représenter la réalité, bien qu’elle soit dotée de la fAcheuse tendance
a générer des couches limites, que 'on peut interpréter, quitte a trop simplifier pour 'instant, comme des
zones de tourbillon intense a proximité des bords. Des couches limites peuvent aussi apparaitre dans le cas
de conditions de Navier, mais elles sont un ordre plus faible en intensité. Remarquons qu’avec ces deux
conditions, le fluide n’a pas la possibilité de pénétrer le fond de 'océan.

Les équations présentées succinctement ci-dessus constituent le systeme de Navier-Stokes a surface li-
bre. Ce dernier a été étudié mathématiquement par quelques courageux-ses auteurs-rices. Dans le cas de
conditions de Dirichlet au fond, nous pouvons ainsi mentionner les travaux de Beale (1981), Allain (1987)
ou encore Guo and Tice (2013c) concernant le caractére localement bien-posé de ces équations. En prenant
de petites conditions initiales, il est méme possible de dégager des résultats de caractére bien-posé globaux
en temps (Beale 1984, Nishida and Teramoto 2004, Guo and Tice 2013a,b). Si la condition de Dirichlet se
voit remplacée par la condition de Navier, I’auteur ne connait que le résultat local en temps de Bresch and
Noble (2011). Enfin, le cas d’un fond infiniment profond a été traité par Masmoudi and Rousset (2017), ou
la limite de viscosité évanescente a, de surcroit, été établie. Le systeme limite est ’objet de ce qui suit.

[.2. Le systéme d’Euler a surface libre

L’essentiel du travail que nous présentons ici concerne les effets de la viscosité de I’eau sur I’écoulement
océanique cotier (avec la prudence qu’il est nécessaire de prendre, nos résultats étant pour 'essentiel bi-
dimensionnels). Effectivement, la viscosité de 1’eau étant relativement faible (ou, plus précisément, les
nombres de Reynolds océaniques étant habituellement grands), une hypothése naturelle consiste & la négliger
totalement (H6). Sil’on pose formellement v = 0 dans les équations de Navier-Stokes incompressibles, nous
obtenons les équations d’Euler (tout aussi incompressibles),

1
Gtu—i—u-Vu—i-;Vp:g
V.-u=0.

Pour autant, il est loin d’étre acté que dans la limite v — 0, la solution du systéme visqueux présenté en
section [.1 finisse par devenir une solution du systéme ci-dessus, et ce du fait de I'influence des bords. En
effet, en posant ¥ = 0 dans les équations de Navier-Stokes, nous perdons la plus forte dérivée (le laplacien
vectoriel). De ce fait, il n’est pas possible de conserver la méme quantité de conditions de bords et il ne reste
qu’a espérer que les contraintes excédentaires ne poserons pas de problémes (le chapitre 5 nous montrera
que parfois elles le font). Pour fermer le systéme d’Euler, il y a besoin d’une condition spatiale en moins.
Cela est fait sans ambiguité dans la littérature scientifique en imposant

p=0 a linterface T, (¢)



u-ny, =0 au fond Ty,

avec 7, le vecteur unitaire perpendiculaire a la surface I',. En I’absence de fond, le résultat remarquable de
Masmoudi and Rousset (2017) assure la convergence de petites solutions de viscosité v > 0 vers de petites
solutions du systéme d’Euler. Ce dernier ayant aussi été étudié mathématiquement par Lindblad (2005),
Coutand and Shkoller (2007) ou encore Zhang and Zhang (2008).

[.3. Les équations des vagues océaniques, dites de Zakharov—Craig—Sulem

Comme il est coutume en dynamique des fluides, le tourbillon w = V x u est une quantité que ’on espére
garder petite. En effet ’étude du systéme présenté en sec. 1.2 est grandement simplifiée si I’on suppose w = 0,
c’est-a-dire Virrotationnalité de 1’écoulement (H11). Cette hypothése ne se fait que rarement sans intérét
personnel. Elle conduit en effet a I’expression de la vitesse u comme le gradient d’un potentiel V ¢, astucieuse
substitution. Cependant, bien que la validité de cette réécriture ne ferait nullement débat si la dynamique
de 'océan pouvait étre correctement modélisée par le systéme d’Euler (du fait de la loi de conservation de
la circulation de Kelvin : théoréme 1.6 ci-aprés), il peut arriver que les effets visqueux, petits mais présents,
conduisent & quelques complications (prenant souvent la forme d’un décrochement de couche limite).

Nous reléguons a plus tard la périlleuse question de la stabilité des couches limites. Pour I'instant, nous
préférons discuter des conséquences de I’hypothese d’irrotationnalité du point de vue de la modélisation.
Dans son article fondateur, Zakharov (1968) a remarqué qu’en introduisant la variable (¢, 2) = d)(t, T,z =

h(t,f)), la valeur du potentiel calculée au niveau de la surface libre I';(t), alors les équations des vagues

prennent une forme hamiltonienne en tous points ressemblante & celle des équations de la mécanique (mais
en dimension infinie). Avec les notations modernes introduites par Craig and Sulem (1993), cela s’écrit

oh = §,H 1 1
{ 8:w _ —5iH~ avec H[h,w]:zéthN[h]w—kZ/Rgh??

ot DtN[h]y est Vopérateur de Dirichlet-vers-Neumann, associant & 1 la dérivée normale 9,,¢ du potentiel
évaluée au niveau de I'interface ; la dérivée variationnelle de H selon ¢ étant dénotée 0,,H. L'utilisation de
cet opérateur permet de réécrire le systéme d’Euler a surface libre a 'aide de quantités définies sur 'interface
uniquement, selon

9,h = DtN[h]

WL 42
[DtN[R]¢) + Vi - V]

1+|Vh|? '
De cette maniere, la dimension du probleme a été réduite d’une unité. Bien que fortement non-linéaire,
les Equations aux Dérivées Partielles ci-dessus ont été grandement étudiées (parmi ces travaux, nous
mentionnons ceux de Lannes (2005, 2013b), Ambrose and Masmoudi (2009a,b), Alazard, Burq, et al.

(2014a,b), Alazard and Delort (2015a,b) ou encore les travaux & faible régularité récents de Ai et al. (2022,
2024)).

o) = —gh — %‘@1&‘2 + %

1.4. Adimensionnement’

L’analyse mathématique comme 'approximation numérique des solutions des trois systemes fondamen-
taux discutés ci-dessus est une tache bien souvent fastidieuse. Dans certains cas, il est possible d’utiliser
des modeles plus simples (comme, par exemple, ceux de Barré de Saint-Venant, Serre, Green and Naghdi
ou encore Korteweg and de Vries). Pour comprendre les régimes de validités de ces modeéles comme pour
les justifier rigoureusement, la stratégie habituellement employée consiste a adimensionner les équations,
c’est-a-dire a redéfinir les diverses variables et quantités dans le but de laisser apparaitre des parametres que
l’on pourrait faire tendre vers zéro ou vers 'infini. Dans notre cas, nous faisons apparaitre trois grandeurs
sans dimension physique,

amplitude hauteur d’eau _ hauteur d’eau - vitesse de groupe

= —— = —-——- Re =
hauteur d’eau H longueur d’onde v




En suivant la procédure décrite au chapitre 1 (sec. III, notamment le tableau 1.2), le systéeme de Navier-
Stokes a surface libre devient le suivant,

pou, +eu, - V,yu,=—-Vp——+—A u

|
<

d,h + et - Vh

g ~
= £ [y, 7,7

avec la vitesse u,, et les opérateurs V, et A, redimensionnés (donc avec I'indice ) définis en section I11.3
du chapitre 1. Les autres équations constituantes se transforment de facon relativement inintéressantes. A
partir la, la version adimensionnée du systeme d’Euler s’obtient formellement en prenant Re = 4+o0o0. Un
grand nombre de régimes asymptotiques correspondant & des faibles profondeurs peuvent étre obtenus dans
le cas p <« 1 (cf. Lannes (2013b, 2020) ou bien Duchéne (2021)). Cependant, la limite que nous allons
discuter tout du long de la seconde partie de ce travail sera celle de viscosité évanescente, Re — +oc.

II. La description lagrangienne et les équations des vagues défer-
lantes

Discutons maintenant d’une généralisation des équations des vagues océaniques de Zakharov, Craig et
Sulem au cas des courbes et surfaces paramétrisées évoluant selon un schéma lagrangien, complétant ainsi
le travail de Craig (2017). Cela permet de lever ’hypothése de non-déferlement (HS8).

Nous présentons ici une motivation des équations dans le cas d’une espace physique bi-dimensionnel
(d = 1) afin d’alléger les notations. Le cas général est traité en détails dans le chapitre 2 (mais nous
rappellerons les résultats en fin de section). Représentons donc I'interface entre 1’eau et Pair par une courbe
paramétrisées ~(t,-) : R — R? supposée continue et infiniment différentiable pour le moment, et dont la
paramétrisation dépend du temps. Cela suppose déja que le volume de fluide 2(¢) est d’un seul tenant
(et donc qu’il n’y a ni goutte, ni bulle, ni écume) et simplement connexe (donc que linterface ne s’est
pas recoupée elle-méme). Une représentation schématique de cette configuration est proposée en figure 2.6.
L’évolution de la paramétrisation se fait de facon lagrangienne, selon

at7(ta S) = u<t7 ’Y(ta 5))7

c’est-a-dire : chaque point de l'interface se meut a la vitesse du fluide ; (¢, s) représente donc ’élément de
fluide initialement & la position (0, ).

Comme dans le cas eulérien, ’hypothese d’irrotationnalité est absolument essentielle pour cette approche.
En effet, dans un domaine simplement connexe (ce qui est souvent le cas avant le recoupement de 'interface),
elle permet l'introduction du potentiel de vitesse ¢ (une extension & des domaines multiplement connexes a
été discutée par Ambrose, Camassa, et al. 2022). Comme pour des vagues non-déferlantes, définissons aussi
P(t,s) = qS(t,'y(t, s)) la valeur du potentiel au niveau de la surface libre. En substituant u = V¢ dans
I’équation d’advection lagrangienne présentée ci-dessus, nous obtenons alors

O(t.s) = Vo(t,v(t,s)) = [ﬁ(t, 5)- Vo (t(t, s))}ﬁ(t, 5) + [%(t, s)- Vo (1AL, s))}%(t, )

:Mtsﬁts 8swt5?ts
88'7‘ ( ) > ( ? )+ as’y‘( ? ) ( ? )

_ DtN["/W(@S) (a )J‘ + aSQ/J(t?S) (8 7)7
9,v(t,s) 0,7(t,5)|

les vecteurs unitaires 7(t, s) et n(t, s) étant, par définition, une base orthonormée de R? pour chaque temps
t > 0 et chaque abscisse curviligne s € R. L’opérateur DtN[vy]¢ est défini d’une fagon similaire & sa version
eulérienne.

L’obtention d’une équation d’évolution pour v se fait rapidement en appliquant a de multiples reprises
la regle de la chaine et en utilisant I’équation de Bernoulli. Il est aussi possible de ne travailler qu’avec



des quantités lagrangiennes, c’est-a-dire repérées par une systeme de coordonnées dépendant du temps et
évoluant a la vitesse du fluide. Ce point-de-vue alternatif est discuté au chapitre 2. Au final nous obtenons

oty s) = 0,(6(£1(1:5)) ) = (9:6) (t.7(1,9)) + 91t ) - Vo (£ (t, )
=—97.(t,5) + %‘W)(t,'r(t, 8))‘2

= —g(t:) + 3 (W) (t:5)+ 3 (“’) an

avec v, la composante verticale de . Une fois encore, il a été possible de réécrire le systeme d’Euler
irrotationnel a surface libre a ’aide de quantités définies sur 'interface uniquement.

Il est aussi possible d’obtenir ce systéme dans I’espace physique tri-dimensionnel, lorsque la surface libre
est vue comme une surface paramétrisée (¢, +) : R? — R3. Pour ce faire, introduisons quelques notations au
préalable. La paramétrisation étant bi-dimensionnel, nous abusons des notations de la section I et dénotons
par § = [s!, 5?] la paramétrisation de I'interface. Il s’agit d'une paramétrisation réguliere si d 1 x 9,27y # 0,
ce qui permet de définir un vecteur normal unitaire 7o par la méme occasion. Les vecteurs tangents 7; = 0,17y
et 7, = 0,27y ne peuvent en aucun cas étre supposés perpendiculaire étant donné que, méme s’ils sont choisis
initialement ainsi, il n’y a aucune raison qu’ils le restent par la suite. De ce fait, a t et § fixés, les trois
vecteurs 71, T; et T, ne forment pas une base orthonormal de R et il n’est plus possible de décomposer V¢
aussi simplement qu’en deux dimensions d’espace. Cette difficulté est résolu par 'utilisation de la métrique
g, définie comme

g = 881")’ : 881’7 681")’ . 832’7:| )
8327 : 831"}’ 832")’ : 832’)’

Pour une paramétrisation réguliere ~(t, 8) de T';(t), g(¢, s) est définie positive et fournie donc un produit
scalaire sur l’espace tangent T;I';(t). Cette propriété essentielle nous permet de décomposer V¢ et nous
obtenons le systeme lagrangien suivant,

— Mﬁ+ [3 RV 21/)] g ! [851’7]

Oy —
= Jdet(g) D2y

2
1 ( DtN 1 O
o= (Tpalt) e ae (1]

En fait, cette forme fonctionne aussi pour une interface de dimension un, avec g = |0,7/|, et se généraliser
aux dimensions supérieures. Ces équations sont aussi établies par une approche géométrique au chapitre
2, ayant l'avantage de laisser apercevoir plus de structure sous-jacente, au prix d’une grande quantités de
notations superfétatoires.

Une question naturelle concerne la structure hamiltonienne de ce systéme : la dynamique découle-t-elle
encore d’une hamiltonien, comme dans la formulation eulérienne, ou non 7 La réponse est en demie-
teinte : une structure hamiltonienne existe mais elle n’est nullement canonique. En effet, si 'on définit la
fonctionnelle suivante,

Hiy.vl =5 [ wDNGlw+§ [ 02)2 5 deile)

alors nous parvenons a dégager la structure suivante,

9 n éII . . ]]
tw d g S FELI 1€ aIlgeIl 1elle.

Bien que quelque peu décevante, I’absence de canonicité n’est guere surprenante : la partie tangentielle
des équations ne contribue pas a la forme de 'interface, elle n’encode que le glissement des éléments de
fluide sur cette derniére. Notons toutefois que la forme symplectique qui apparait dans les équations génere



effectivement une structure hamiltonienne, au sens élargi de Olver (1980) ou Kuksin (2000). Remarquons
tout de méme une certaine forme de normalisation du fait de |n|? = detg.

A Taide de toutes ces considérations sur la paramétrisation de la surface libre, il nous est possible de
formuler une définition mathématique du déferlement de la solution de ce systéme.

Définition 2.22. Au temps t > 0, la vague représentée par Uinterface T';(t) a déferlé si la différentielle de
Vapplication &+ 5+ 7(t,3), vue comme une fonction de R? — R?, n’est pas inversible en un certain 5.

En comparant cette définition avec celles données dans la littérature expérimentale (Galvin 1968; Wiegel
1964), nous voyons qu’il s’agit en réalité de la définition d’une déferlante plongeante (plunging breaker). Les
autres types de houle s’étant brisée étant caractérisés par des gouttes ou de ’écume, nous ne pouvons les
modéliser de la facon présentée ici. Remarquons que par le théoréme de la fonction inverse, cette définition
nous fournit une autre caractérisation (non-équivalente) du déferlement : §— s+ (¢, 5) est injective si la
vague (la solution) n’a pas déferlé. Le lien avec la vision usuelle de la brisure d’une vague comme un choc
hyperbolique se comprend aussi au travers de cette définition.

L’injectivité de § = X,(5) = § + 7(t,5) en 'absence de déferlante nous permet de définir son inverse
X'; 1(2) sans ambiguité. Cela permet d’expliciter un lien entre variables lagrangienne § et eulérienne 7
horizontale. Dans le cas d’un espace ambient bi-dimensionnel (d = 1), nous parvenons & montrer que les
quantités

plt,a) = (X)) et h(ta) = 7. (tX7(s)

sont des solutions du systeme de Zakharov—Craig—Sulem. De ce fait, les équations des vagues déferlantes
peuvent effectivement étre vues comme une extension des équations des vagues océaniques, avec équivalence
en l'absence de déferlement.

[1I. Un schéma numérique pour les équations de Navier-Stokes a
surface libre

L’utilité de 'hypothése d’irrotationnalité (H11) a été mise en lumiére dans les deux sections précédentes.
Il convient toutefois de motiver son emploi. C’est le sujet de la seconde partie de ce travail, débutant ici.
Nous nous proposons d’approximer numériquement la solution des équations de Navier-Stokes a surface libre
(le systeme le plus fondamental, résultant du plus faible nombre d’hypothéses physiques) afin de comprendre
les effets de la viscosité sur les écoulements océaniques de petite échelle (de 'ordre d’une longueur d’onde
en faible profondeur).

Figure 3.14 (reproduction) — Exemple de maillage obtenu dans le cadre d’une simulation de vague déferlante &
un nombre de Reynolds Re = 105. Celui-ci contient N, = 59532 sommets, N, = 117729 triangles et N, = 174258
arrétes.

Commengons donc par décrire la méthode numérique employée. Contrairement a grand nombre d’études
déja mentionnées, nous allons adopter un schéma d’advection lagrangien pour l'interface et employé la
méthode des éléments finis, implémentée via l'interface c++ FreeFEM (Hecht 2012).

Lorsque ’évanescence du tourbillon n’est pas supposée (et cela ne peux étre fait dans le cas des équations
de Navier-Stokes a surface libre, comme nous allons le voir), il devient nécessaire de mailler I'intégralité du
domaine fluide. Cela est fait a l’aide de triangles (cf. fig 3.14, reproduite ci-dessous). Ce faisant, transporter



I'interface de facon lagrangienne ne peut étre réalisé sans transporter le reste du maillage. Pour cela, nous
employons la méthode lagrangien-eulérien arbitraire (ALE, Hirt et al. 1974) qui consiste & choisir une vitesse
v propre au maillage.

Avec un schéma temporel de type Euler implicite, en dénotant par (u™,p™) I’état du systéme aprés n pas
de temps, chacun de taille §t™ calculée selon la condition CFL, et v™ la vitesse du maillage a ce méme pas
de temps, il est possible d’obtenir la formulation variationnelle du probléme, nécessaire pour implémenter
la méthode des éléments finis (FEM). Soit donc I’espace fonctionnel suivant,

d+1
Hi (Q) = {ue (Hl(Q)) t.q. w1y, =0 sur Fb},

correspondant & la condition de Navier (avec une adaptation rapide pour ce qui est des conditions de Dirichlet
sur T'y). Nous avons alors le probléme suivant : trouver deuz fonctions u! € H%b (Qn) et p"tt e L2(Q")
telles que

n+l _ ,n 2
/Qn [w- % +w- (u" — v") Va4 Re S(w) : S(u™1)

_pTL+1V,w_qV.un+1_w.g dw:O’

pour tout w € HE (Q") et ¢ € L*(Q"). Le domaine Q" étant le domaine de fluide au pas de temps n.
S(u) correspond a la partie symétrique du tenseur gradient de w. Il suffit ensuite de transporter chaque
point de Q" & la vitesse v pour obtenir Q"+, Noter la présence du terme v" - Vu*!, assurant que le
mouvement du domaine Q™ soit bien compensée. La justification de ce terme sera effectuée en section II
du chapitre 3. La formulation faible présentée ci-dessus fonctionne aussi bien au niveau continu qu’une fois
une triangulation du domaine Q" réalisée. A la connaissance de auteur, aucune justification rigoureuse de
la méthode ALE n’a été proposée. Il est formellement établi que 'ordre de la méthode correspond & 'ordre
du schéma d’advection de Q" au chapitre 3.

Deux choix de vitesse du maillage v™ sont discutés. Déja, remarquons que si I’on prend un schéma
purement lagrangien, pour lequel v® = wu", alors la non-linéarité disparait compléetement du systéme de
Navier-Stokes. Par contre, dans le cas d'une condition de Navier imposée sur I'y, il n’est pas totalement
assuré que la géométrie du fond sera conservée (bien que ce soit le cas au niveau continu). Pour palier a ce
probléeme, une autre possibilité est de calculer v™ en résolvant numériquement le probléme elliptique suivant,

Av" = 0 dans Q"
v" = u" sur Iy
v" = 0 surly,

a chaque pas de temps. De cette facon le schéma est purement eulérien sur le fond I', et purement lagrangien
au niveau de l'interface I';(¢). Les deux méthodes seront utilisées dans les pages qui suivent.

L’implémentation de ce schéma numérique est fait via FreeFEM. En particulier, la génération et le
transport du maillage lui sont délégués, de méme que la génération des matrices. Dans I’objectif de satisfaire
la condition LBB, des éléments de Taylor-Hood P2 x P! sont utilisés. La méthode s’avére relativement lente,
en particulier du fait de la nécessité de recalculer les matrices a chaque pas de temps. De ce fait, I'interface
pré-existante entre FreeFEM et PETSc est utilisée afin de paralléliser le code via une décomposition du
domaine (Dolean et al. 2015) et la méthode des multi-grilles géométriques.

La validation du code est réalisée de différentes maniéres. Premiérement, avec une faible viscosité (Re =
10°), la solution numérique est comparée & une solution analytique de faible amplitude : 1’'onde de Stokes de
premiére ordre en la non-linéarité . La différence entre les deux reste de I'ordre de £2, de sorte qu’il n’est
pas possible d’attribuer cette erreur a la solution analytique ou au schéma numérique.

Les solutions analytique tenant compte de la viscosité sont rares. Un second test est réalisé en com-
parant le temps d’amortissement 7 d’une onde de Stokes de faible amplitude, obtenu numériquement, au cas
théorique calculé par Lamb (1932). Comme 7 = O(Re), une viscosité assez forte est utilisée (Re = 10%). Une
fois encore, la différence reste de I'ordre de 2. On remarque toutefois via ce cas-test que, sans donner de
meilleurs résultats, la méthode de Crank-Nicolson se montre bien plus instable que le schéma Euler implicite
en temps.



Enfin, un dernier contrdle est réalisé en comparant la solution & faible viscosité (Re = 10°) & la solution du
systeme d’Euler a surface libre dans le cas d’une vague déferlante, selon une condition initiale irrotationnelle
construite selon le modele de Baker, Meiron, et al. (1982), calculée a l’aide de la méthode des dipoles décrite
par Dormy and Lacave (2024). La faible différence entre les deux approximations numériques permet a la
fois de conclure de la robustesse des deux méthodes, mais aussi de la convergence de la solution visqueuse
vers la solution irrotationnelle dans ce cas précis.

IV. Limite de viscosité évanescente et déferlement

Cette partie se base sur notre étude (Riquier and Dormy 2024b). Il y est question de la limite de faible
viscosité (Re — +o00) avec un fond plat sur lequel nous venons imposer la condition de Navier, et une
condition initiale conduisant au déferlement de la vague. Dans la direction horizontale, ’écoulement est
supposé périodique.

(=}
S|
ol

2

Figure 4.6 (reproduction) — Comparaison des surfaces libres obtenues par approximation de la solution visqueuse
(Re = 102 — 10°) et de la solution non-visqueuse irrotationnelle (Re = +00), cette derniére étant calculée a ’aide de
la méthode du dipole de Dormy and Lacave (2024).

La condition initiale est construite de sorte a étre irrotationnelle. Pour ce faire, nous prenons une interface
initiale h(0,z) = hy + acos(kx) (avec hy = k = 1, et donc une longueur d’onde A = 27) correspondant &
une onde linéaire d’amplitude a = 0.5, puis nous calculons la vitesse initiale en résolvant numériquement le
probléme elliptique suivant,

Apy, = 0 dans Q(0)
0,00 = uy,-n surI',(0) ={z=hy+acos(kx)}
0,09 = 0 sur I'y = {z = 0},

avec la vitesse initiale u;, correspondant a une extension d’amplitude finie d’'une onde de Stokes d’ordre 1,

c’est-a-dire
. sin(kx) ka
uin N = ay/ gk tanh(kho) . 5 1 — m . COS(]CIZ;) .
\/1 + k2a? sin” (kx) 0

La vitesse initiale est alors u(t = 0) = V¢, assurant ainsi un tourbillon initialement nul.

Des simulations utilisant la condition initiale que nous venons de décrire ont été réalisées avec des valeurs
du nombre de Reynolds variant de Re = 102 & Re = 10°. Dans la figure 4.6 (reproduite ci-dessus dans une
version tronquée), ces solutions numériques sont comparées avec celle du systéme d’Euler a surface libre
(irrotationnelle, calculée a 1’aide du code de Dormy and Lacave (2024)). La convergence est alors observée.
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Figure 4.13 (reproduction) — Le tourbillon w = d,u, —0,u, au temps t = 2.9 pour Re = 10* et 10°. Les lignes noires
seront utilisées au chapitre 4 dans 'objectif d’étudier la taille et le profil de la couche limite.

Afin de comprendre la convergence constatée plus finement, il semble utile de s’intéresser a la dissipation
énergétique. En effet, de rapides manipulations du systéme de Navier-Stokes nous permettent d’obtenir le
bilan d’énergie globale suivant,

(7))
il w? | + = — (7,)°1,|0,7| | + =— S(u) : S(u) =0.
24t ( Q(t) ) 2dt \Jp ‘ Re Jog

Le dernier terme est responsable de la dissipation visqueuse. D’un point de vue local, nous avons 1’équation
dévolution de I’énergie cinétique,

2
U 1 1
0 —|—u-V} — | —u-g+u-Vp=— u - Au=—— [V- wut +w2}.
[ t 2 g P~ Re Re ( )
Il est intéressant de remarquer que la dissipation énergétique a lieue dans le support du tourbillon. Pour cette
raison, cette derniére quantité est affichée en figure 4.13 (reproduite ci-dessus dans une version abrégée).
Une nappe de tourbillon apparait a proximité immédiate de l'interface. 1l s’agit en réalité d’une couche

limite de Navier (tourbillon uniformément borné en Re et contenu dans une mince région de taille Refé).
Dans la limite Re — 400, cette couche limite disparait donc, expliquant ainsi la convergence constatée vers
la solution irrotationnelle.

Bien entendu, cette conclusion ne tient qu’avant le recoupement de l'interface par elle-méme. Les
phénomenes physiques en jeu lorsque cela se produit ne semble pas encore bien compris mais il est établi que
cela conduit a la génération de structures turbulentes, et donc a une plus importante quantité de dissipation
énergétique.

La réalisation des mémes simulations avec une condition de Dirichlet imposée au niveau de I'y conduit a
des conclusions identiques pour les valeurs de Re considérées. En effet la couche limite de Dirichlet (tourbillon

1 RPN . —1 . "
d’intensité Re? localisée & une distance Re 2 du bords) semble stable pour ces valeurs de viscosité.

V. Lhypothese dirrotationnalité et Iinfluence de la topographie

Intéressons-nous maintenant & 1’épineuse question de la préservation de l'irrotationnalité. En effet, il
a déja été acté que ses implications sont d’une grande importance du point de vue de la modélisation
mathématique des vagues océaniques : lorsque la vitesse découle d’un potentiel, le systeme d’Euler a surface
libre se réduit en un systeme d’équations de dimension moindre a partir desquelles il est possible de justifier
nombre de modeles réduits correspondant a des régimes asymptotiques.
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Intuitivement, une perte d’irrotationnalité, c’est-a-dire une génération de tourbillon, ne peut étre le fait
que de deux phénomenes physiques : la turbulence due au recoupement de l'interface, et un décrochement
de couche limite au niveau des obstacles sous-marins. Il a déja été établi que nous ne parvenons pas a
modéliser le comportement d’une vague dans le premier cas. Nous allons donc traiter du second en essayant
de déstabiliser la couche limite gisant au fond de 1’eau lorsque la condition de Dirichlet (physiquement plus
motivée) est prescrite.

V.1. Cas d’une marche rectangulaire

Le premier cas que nous traitons est celui représenté schématiquement en figure 5.3 : un obstacle rect-
angulaire, donc avec deux coins, placés au fond de l’eau. La condition initiale est construite de la méme
facon qu’a la section IV, avec une amplitude a = 0.1 cette fois-ci, de sorte a ne pas voir de déferlement.
L’évolution du tourbillon est visible en figure 5.6 (reproduite ci-dessous, quoique tronquée).

™ %” 2n

T

Figure 5.6 (reproduction) — Evolution du tourbillon dans une simulation de vague d’amplitude initiale a = 0.1
au-dessus d’une marche rectangulaire avec un nombre de Reynolds Re = 10°.

On remarque un détachement de la couche limite au niveau des coins du rectangle. De part la nature
oscillante de ’écoulement, ce détachement prend la forme d’une succession de filaments positifs et négatifs,
qui s’enroulent sur eux-mémes sous 'effet de 'instabilité de Kelvin-Helmholtz. Au final, apres le passage
d’une créte et d’un creux, la résultante peut étre vue comme une paire de tourbillons contra-rotatifs, évoluant
sous l'influence des autres tourbillons déja présent et de I’écoulement potential d’arriere-plan. Lorsque la
viscosité diminue, chaque vortex semble devenir de plus en plus singulier : ce phénomene ne devrait pas
disparaitre a partir d’une certaine valeur de Re.

Une question naturelle est alors : est-ce que la présence de ces tourbillons peut venir perturber la surface
libre ? Pour répondre & cette question, nous avons réalisé la méme simulation que celle présentée dans la
figure 5.6 pour d’autres valeurs (plus petites) du nombre de Reynolds. Ces résultats sont comparés, encore
une fois, avec la solution non-visqueuse irrotationnelle approximée & I’aide de la méthode des dipoles (Dormy
and Lacave 2024). Le résultat est visible en figure 5.4 (reproduite ci-dessous).

—— Re=10> - Re=10* —— Re=10° - Re=10" —— Re=10" - Re=10 —— Re=10" —— Euler

1.20

1.09 —

0‘5 _
0.0

Figure 5.4 (reproduction) — Evolution des interfaces correspondant a diverses simulations de vagues d’amplitude

115

t = 15.00
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initiale a = 0.1 au-dessus d’une marche rectangulaire avec un nombre de Reynolds compris entre Re = 102 et Re = 10°.

La solution du systéme d’Euler & surface libre, calculée & l’aide du code de Dormy and Lacave (2024) et la méme
condition initiale irrotationnelle est aussi présentée.
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Contrairement aux résultats présentés dans la section IV, la convergence de la solution visqueuse vers la
solution irrotationnelle lorsque Re — 400 est cette fois-ci remise en question. En effet, on remarque que la
solution des équations de Navier-Stokes a surface libre semble converger vers une limite qui ne correspond
pas a la solution non-visqueuse et irrotationnelle. Bien que l'effet soit faible, la différence constatée semble
augmenter dans le temps, au fur et & mesure que des tourbillons son émis et que 1’écoulement ressemble de
plus en plus a un gaz de tourbillons.

V.2. Cas d’une marche de courbure finie

La présence d’'un détachement de la couche limite dans le cas de coins anguleux n’est nullement sur-
prenant. En effet, pour un nombre de Reynolds donné, il existe un angle a partir duquel ce décrochement
aura lieu (Sychev et al. 1998). Mais est-ce toujours le cas pour une marche lissée de sorte & ce que la courbure
de cette derniére soit finie 7 Pour étudier cette question, nous utilisons la méthode dites de mollification
afin de construire une topographie prenant toujours la forme d’une marche mais avec un rayon de courbure
r minimal. Un exemple d’une telle simulation est présenté dans la figure 5.13 (reproduite ci-dessous).

T 3 2w
X

Figure 5.13 (reproduction) — Evolution du tourbillon lors d’une simulation de vague d’amplitude initiale a = 0.1
au-dessus d’une marche rectangulaire lisse (rayon de courbure r = 0.1) avec un nombre de Reynolds de Re = 10°.

Bien que le tourbillon émis soit plus faible, le décollement de la couche limite reste néanmoins présent
malgré une topographie lisse. En fait cette derniere apparait une fois un seuil de courbure franchi. Ce seuil
semble dépendre du nombre de Reynolds.

Les implications de cette observation sont multiples. Déja, elle contrevient & l'usage de modéles
irrotationnels dans le cas d’un fond non-plat avec une topographie de trop forte courbure. Par la suite,
elle empéche de la méme facon la solution visqueuse de converger vers la solution irrotationnelle lorsque
Re — 400, le systeme limite est tout autre. FEnfin, il n’est pas possible de conclure de I'absence de
turbulence pour des valeurs encore plus élevée de Re. Des conclusions plus complétes seront présentées a la
fin du chapitre 5.

Voila qui conclut notre résumé en francais du travail qui va suivre. Le caractere trop succin de ces

derniéres pages doit probablement laisser au lecteur un goiit d’incomplétude ainsi qu'un grand nombre de
questions. Nous espérons qu’il n’en sera pas de méme des suites de la lecture des pages qui suivent.
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Chapter
Introduction

“[T]he next waves of interest, that are easily seen by everyone and
which are usually used as an example of waves in elementary courses,
are water waves. As we shall soon see, they are the worst possible
example, because they are in mo respects like sound and light; they have
all the complications that waves can have.”

“[Slince the wave is not so simple, the shocks are much more contorted,
and the wave over-curves itself [...]. This is what happens when waves
come into the shore, and the real complexities in nature are well
revealed in such a circumstance. No one has yet been able to figure out
what shape the wave should take as it breaks. It is easy enough when
the waves are small, but when one gets large and breaks, then it is
much more complicated.”

Richard P. Feynman, The Feynman Lectures on Physics (1965)

Water Waves might be one of the easiest scientific subject to describe to a non-scientist: everybody has
seen them (not only at the surface of the ocean but also in a glass of water for instance), everybody has the
chance of observing their oscillatory nature. Their physical and mathematical description, a process that
can arguably be traced back to the discovery of Archimedes’ principle, remains however, even to this very
day, a challenging scientific problem. Indeed, they exhibit complex behaviours whose understanding is far
from complete.

Among the many difficulties that may arise, the breaking phenomenon plays an important role. Intu-
itively, it corresponds to the moment the surface of the water rolls up onto itself, due to the crest of the
wave travelling faster than the trough up front, before collapsing due to its own mass, creating a formidable
amount of small-scale secondary structures (droplets, bubbles, turbulence, vortex filaments and foam). Un-
fortunately, it cannot be overlooked easily as it is mainly responsible for the viscous dissipation arising on
small time scales, through the generation of vorticity happening after the splash singularity has occurred,
i.e. after the free surface self-intersected.

As difficult as it might be, studying water waves is of fundamental importance in the modern era.
Generally speaking, the ocean plays an important role in the global Earth system and its impact on climate
change has been widely and thoroughly studied (IPCC 2019, 2023). From the viewpoint of Fluid Mechanics,
the ocean might be one of the most difficult configuration possible: it is a large-scale stratified fluid with

15



a free surface whose temperature, salt density and viscosity are not homogeneous, evolving in a rotating
spherical-like frame with irregular boundaries and which lies below either a lighter fluid or large portions of
its buoyant solid phase. A total account of all physical processes happening in the ocean is not conceivable
at the present stage of scientific knowledge. Therefore many hypotheses must be made in order to carry out
any theoretical study, preventing a complete global description. Water waves, in particular, are associated
with some important climate-related natural disasters, like e.g. tsunamis or coastlines wearing away. Their
generation, evolution and associated strength must hence be evaluated thoroughly in order to increase the
accuracy of forecasting methods and eventually come up with adaptive solutions.

It seems unlikely that independent scientific communities could provide meaningful answers to these
important issues (and their possible future consequences) without interacting with each other openly.
Indeed, such a complex problem should be tackled in every possible ways and the theoretical, computational,
experimental and observational works should be considered as a whole. With that in mind, the work pre-
sented here aims at using methods from both the theoretical and the computational world extensively. The
text is therefore written in a way primarily accessible to people originating from either of these communities.

In the pages that constitute this introductory chapter, we will try our best to provide a survey of
important mathematical and physical results regarding water waves and related physical processes, without
making the distinction between the different possible approaches to the same problem. Of course, the present
considerations are subject to the author’s personal affinity with theoretical and computational studies and,
therefore, not all experimental work may be referred to. After this, certainly incomplete, state of the art
discussion, we shall motivate the work done in the present doctoral thesis to understand why it has been
carried out and where its conclusions lie.

[.  Mathematical results on the Water Waves problem

In the vast majority of the theoretical result the author is aware of, the Water Waves problem relates to
the mathematical description of a homogeneous incompressible, possibly viscous, fluid subject to a constant
gravitational force. It is usually encompassed between a possibly unfathomable solid boundary: the bed
and a time-varying interface between the fluid and the void (or a lighter secondary fluid which is commonly
disregarded): the free surface. In the present work, the former will also be referred to as the bottom, the
topography, the bathymetry or, simply, the ground. In light of the physical properties of the ocean, we
understand that this already corresponds to a greatly simplified framework. In chapter 1, we shall give a
thorough motivation of the Partial Differential Equations (PDEs, or models) emerging once a few hypotheses
have been made.

[.1. The free-surface Navier-Stokes equations

Describing viscous fluids, the Navier-Stokes equations are widely considered as the most fundamental
laws of fluid mechanics. They were obtained independently by Navier (1821) and by Stokes (1845). Using
modern notations, they read

1
atu—ku-Vu—F;Vp:VAu—f—g

V.-u=0,

where w is the fluid’s velocity, p its pressure, p > 0 its density and v > 0 its kinematic viscosity (both being
supposed homogeneous). These equations will be discussed thoroughly in chapter 1. For the moment, we
will only mention some of their general properties.

In the whole space R? (d < 4), the existence of global (in time) weak (turbulente) solutions has been
established in the pioneering article of Leray (1934b). In two space dimensions (d = 2), the uniqueness of
these weak solutions has been established by Lions and Prodi (1959) (it is also a byproduct of Leray 1934a).
Solutions that are even weaker are known to exist in any dimension (Hopf 1950). The global existence of
unique stronger smooth solutions has been shown by LadyZenskaya (1958) in 2d for arbitrary initial data,
and in 3d for small initial data by Fujita and Kato (1964). An extension of this last case to arbitrarily large
initial data does not seem to raise any interest.
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The case of a solid boundary will not be treated thereafter as it would be too long, but we must mention
the book of Temam (1984). In order to describe viscous free-surface water waves, the Navier-Stokes equations
should be supplemented with boundary conditions. Neglecting the air lying above the water and the effects
of surface tension, it is natural to assume that the complete stress tensor vanishes on the time-dependent
free surface T',(t) (i standing for interface, see figures 1.6, 1.7, 2.6, 2.3 for the notations),

pn—vp|Vu+ (Vu)'| -n=—ykn  on (1),

with 7o the normal vector pointing in the air/void domain,  the surface curvature (or the sum of the principal
curvatures in space dimension d > 3) and -~y the surface tension coefficient. Should a bottom topography I',
exist, the associated boundary conditions can be of free-slip/Navier type of no-slip/Dirichlet type,

7 x [Vqu(Vu)T’T:n _

S
\

0
0 } (free-slip/Navier) u =0 (no-slip/Dirichlet).

An early mathematical result regarding this system is the one of Solonnikov (1977), in which is considered
a bounded domain whose boundary is entirely free (like e.g. a droplet). The more physically motivated
case of a periodic or infinite horizontal fluid encompassed between a topography T, and a free surface I, ()
was first mathematically studied by Beale (1981), in which a local existence result is proved when surface
tension is present and the no-slip/Dirichlet boundary condition is assumed. This result has later been
extended to the case of vanishing surface tension by Allain (1987) or Guo and Tice (2013c). Assuming
small initial conditions also yields global existence results, with surface tension (Beale 1984; Nishida and
Teramoto 2004) or without it (Guo and Tice 2013a,b). Many of these studies use the lagrangian formulation
of fluid mechanics (which will be introduced in chapter 2, the underlying idea being to use the fluid itself
as a time-dependent coordinate system) and therefore, as a byproduct, apply to breaking water waves too.
The case of an infinitely deep ocean has been treated in Masmoudi and Rousset (2017). To the author’s
knowledge, the case of slip/Navier boundary conditions imposed on T, has only been treated by Bresch and
Noble (2011).

As already mentioned, most results regarding the free-surface Navier-Stokes system are proved using
the Lagrangian formulation of the equations. This somewhat eludes the difficult question of the interface
advection scheme. Studies based on the Eulerian formulation (i.e. the one that has been introduced above)
cannot do so: in order to close the set of equations, another one must be added to the formulation in order to
describe the free surface at all times. This is usually achieved assuming that the fluid’s interface corresponds
to the graph of some function h : R*"! — R, depending only on the horizontal variable(s). When d = 2 (i.e.
when the free surface T';(t) is a one-dimensional curve), h evolves through

Oh=wu-n  with n= [?’h] .

The vector m is the non-normalised vector normal to T',(t) associated with h. Adaptations to a higher
dimension is straightforward. It is implicitly understood that the value of w is taken on the free surface.
Unfortunately, assuming that the free surface is represented by the graph of a function prevents any result
to hold for breaking waves. To overcome this limitation, we shall work, as of chapter 2, with parametrised
curves (when d = 2) and surfaces (when d > 3). We would like to remind the reader that the various
equations appearing in this introduction will be motivated thoroughly in chapter 1.

[.2. The free-surface Euler equations
Both water and air are viscous fluids, but their viscosity being relatively small it may seem like a good

idea to neglect the viscous term appearing in the Navier-Stokes equations in this particular case, yielding
Euler’s incompressible equations,

1
8tu+u~Vu+;Vp:g

V-u=0.
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If the reader is not convinced by the above thorough and rigorous explanation of why we are allowed to use
the inviscid equations, they would be completely right. We shall discuss the relevance of the viscosity in
water waves in the second part of this work.

In the absence of boundary, the existence of global smooth solutions was established by Hélder (1933) and
Wolibner (1933). Weaker solutions with bounded vorticity are also known to exist since the work Yudovich
(1963). Later, Delort (1991) obtained an existence result for any initial vorticity in H!(R?) only (the
notations for function spaces are defined in appendix A), as is the case of vortex sheets. A wider panorama
of the results regarding Euler’s equations is available in the classical books of Chemin (1995) or Majda and
Bertozzi (2002). In all these mentioned results, the vorticity, defined as

w=V Xu,

plays an important role. As we will see, it is directly linked with the viscous dissipation (should it be
considered) and assuming its evanescence allows to introduce the velocity potential ¢, such that u = V¢,
once some geometrical assumptions have been made on the fluid-containing domain.

Euler’s equations being a first-order (in space and time) set of PDEs, closing the system once a wall has
been added is done with less boundary conditions than for the Navier-Stokes equations (second order in
space). In the case of a free surface, it is assumed that the pressure difference across the interface is exactly
given by the surface tension. When there is no upper fluid, this yields

D=7k on I';(1).

Similarly, should a bottom topography exist, we can simply close the system by assuming that the fluid does
not penetrate it. This is formalised as
u-n, =0 on Iy,

with n;, the unit vector normal to the topography. Even though this natural condition seems to hold only
for regular walls, it actually does not prevent to perform non-linear analysis on rather irregular domains too
(Gérard-Varet and Lacave 2013).

Mathematical results regarding the inviscid water waves problem including a non-vanishing vorticity are
scarce. This is mainly due to impossibility to rewrite the problem in d — 1 space dimension(s) (whereas such
simplification can be carried out when w = 0). Nevertheless this did not prevent (Lindblad 2005) to obtain a
first local well-posedness result in 2d for a vanishing surface tension coefficient in infinite depth. Coutand and
Shkoller (2007) then obtained a similar result with possibly non-vanishing ~. Finally, the three-dimensional
case was treated in Zhang and Zhang (2008). When a bottom topography is not neglected, Castro and
Lannes (2014, 2015) have been able to rewrite the problem with two (d — 1)—dimensional quantities together
with the d—dimensional vorticity w in order to obtain a well-posedness result and a rigorously defined shallow
water asymptotic regime.

Some recent theoretical studies (Desjardins et al. 2020; Fradin 2025) have been interested in modelling
the large-scale ocean instead. To this end, a flat one-dimensional free surface is imposed and a non-constant
stratified density is studied.

[.3. The Water Waves equations

Assuming that the vorticity vanishes identically in the fluid domain, i.e. that w = 0, it is allowed
to work with the velocity potential ¢ (as long as the water domain remains simply connected). Then, a
surprising result due to Zakharov (1968) states that the irrotational water waves problem can be entirely
and unambiguously rephrased using two (d — 1)—dimensional quantities: the free-surface elevation 1 and the
value 1 of the potential ¢ on the interface I';(¢). Furthermore, he showed that the resulting set of equations
is in fact Hamiltonian with a canonical symplectic structure. Introductions to Hamiltonian PDEs and their
associated structures can be found in the books of Kuksin (2000) or Craig (2000). The set of equations
originally obtained by Zakharov has later been rewritten by Craig and Sulem (1993) using the Dirichlet-
to-Neumann operator DtN[n]y, associating to v the value of 9,,¢ on the free surface, thus removing every
occurring to ¢ in the equations. Should we follow their method, we obtain the most studied Water Waves
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equations, also called the Zakharov—Craig—Sulem formulation of the problem,
9ym = DtN[n]

= 12
1 [DEN[n]y + Vi - V]
2 1+ V2

1, 2
5t¢=—gn—§|vw\ +

with V denoting the gradient in the horizontal direction(s) only (see chapter 1) and g is the gravitational
acceleration of the earth. The associated Hamiltonian is

1 1 19) = 0,H
Hn, 9] = g/thN[n]z/H- 3 /gn2 such that { 3;2 _ —6wH
R R ntt

A minor modification should be made in order to take the surface tension into account. The major advantage
of this formulation is that it somewhat reduces the study of non-breaking irrotational water waves to the
study of the Dirichlet-to-Neumann operator DtN[n]y (e.g. Craig, Schanz, et al. 1997). However, its discovery
tragically eluded the use of the lagrangian frame (as in the pre-DtN study of Craig, Sulem, and Sulem
1992). All’s well that ends well: Craig (2017) was able to obtain a lagrangian formulation of the Water
Waves equations in 2d (1d interface), thus describing overturning waves. In the present work, we will extend
his new formulation to two-dimensional free surfaces, i.e. to the three-dimensional physical world (which
happens to be the one the author lives in).

The mathematical analysis of the irrotational Water Waves problem did not wait for the Zakharov—
Craig—Sulem formulation to appear. Indeed, the first local existence results are those of Nalimov (1974,
infinite depth, without surface tension), Yosihara (1982, with a bottom, without surface tension) and Craig
(1985, with a bottom, without surface tension). These pioneering results all assumed small initial data. The
first local well-posedness results that lifted this assumption were those of Beyer and Giinther (1998, capillary
waves on the unit sphere) and Wu (1997, infinite depth, without surface tension). This last result was then
extended to the three-dimensional case in Wu (1999). Lannes (2005) then obtained a well-posedness result in
2d and 3d with a topography. The case of non-vanishing surface tension coefficient was treated by Ambrose
and Masmoudi (2009a,b, infinite depth) and by Ming and Zhang (2009, with a finite depth), in which the
vanishing surface tension limit was also investigated. Better estimates of the time of existence have been
obtained in Wu (2009, 2d, infinite depth, without surface tension) or Lannes (2013b, 2d or 3d, with a bottom).
The previously mentioned results are not sharp, however. Indeed, employing results from paradifferential
calculus (Bony 1981,Alinhac 1986), Alazard and Métivier (2009) obtained a paradifferential representation of
the Dirichlet-to-Neumann operator whose utilisation allowed to obtained less regular solutions of the Water
Waves equations without any assumption on the bottom topography. This was done in Alazard, Burq, et al.
(2014a,b, with and without surface tension), making good use of results from Alazard, Burg, et al. (2011b)
too. More recent results following this path are those of Wu (2019) and Ai et al. (2024).

A key assumption made by the previously mentioned results is the criterion formulated originally by
Taylor (1950), stating that on the interface, the normal acceleration of the fluid should not get any higher
than the normal component of the gravitational acceleration. Using Euler’s momentum equation, this
amounts to assume that

—n-Vp - > constant > 0,

with 7 pointing outside of the fluid domain. In fact, Ebin (1987) showed that if the above condition does
not hold initially, then the Water Waves problem is ill-posed.

For small regular initial data, the three-dimensional problem (two-dimensional free surface) enjoys better
decay rates (due to dispersive effects) thant its 2d counterpart. Therefore, the first global existence results
have been obtained in 3d by Wu (2010) and Germain et al. (2012), in deep water without surface tension
and by Deng et al. (2017) with v > 0. The more difficult two-dimensional case has been treated by Alazard
and Delort (2015a,b), Ionescu and Pusateri (2015) and more recently by Ai et al. (2022) (all of these results
without any topography and with vanishing capillary effects).

The case of two fluids with an interface, more physically relevant, is somewhat more involved due to
the possible appearance of the Kelvin—Helmholtz instability (a modern treatment of which can be found in
Benjamin and Bridges 1997a,b), or the Rayleigh-Taylor one in the breaking case. These issues have been
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recently addressed from the mathematical point of view by Lannes (2013a) or Lannes and Ming (2015). In
these studies, it is proved that both the gravity and the surface tension have a regularising effect on small
length scales. The viscosity may have one too. In the author’s opinion, it corresponds to the underlying
mechanisms that prevents the splash (and splat) singularity to happen (Fefferman et al. 2016, Coutand and
Shkoller 2014, 2016), while it can happen in the single-fluid formulation (Castro, Cérdoba, et al. 2013, see
also Castro, Cérdoba, et al. 2019 or Coutand and Shkoller 2019 for the case of a viscous single fluid). Indeed,
in 2d, as a wave breaks, it ultimately encloses an incompressible air pocket which has no other possibility
but to flee the entrapment region with a high velocity below the plunging crest (this interpretation should
be easier to understand by taking a look at one of the numerous schematic pictures appearing in this work,
like e.g. figs. 1.14 or 2.6). In 3d, the air can leave from the sides and so such difficulty should not always
happen.

A major difficulty inherent to free-surface inviscid flows is the appearance of small divisors in many
estimates at the linear level. An introduction to these kinds of problem can be found in the book of Craig
(2000). Most of the time, this issue is solved using a Nash (1956)-Moser (1966) iteration scheme (which
is to be seen as a regularised Newton method). Such method was e.g. used to study standing waves by
Iooss, Plotnikov, and Toland (2005), i.e. surface waves that are periodic in time and space and enjoy
some symmetric properties. A similar method was later used by Iooss and Plotnikov (2009) to study the
so-called diamond waves, which can be seen as a two-dimensional equivalent of Stokes’ waves, as well as
non-symmetric periodic wave trains (Iooss and Plotnikov 2011). We mention the recent work of Alazard
and Shao (2025) who came up with a way to bypass the small divisors-related issues without relying on a
Nash—Moser iterative method using tools from paradifferential calculus.

Incorporating emerging boundaries to the study remains a challenging topic. Indeed, the results men-
tioned in the previous paragraphs all set aside this possibility. However, the interaction of waves and
structures is an important contemporary subject: it allows to model ice shelves, floating bodies or beaches
for instance. Alazard, Burqg, et al. (2011a) treated vertical walls using a periodic reflection method. The
study of de Poyferré (2019) and that of Ming and Wang (2021) observed that the problem could be treated
for small values of the contact angle. More recently, Lannes and Ming (2024) were able to treat more general
cases at the linear level. The inherent difficulties associated with the boundary conditions do not seem to
be easier to handle with reduced models, unfortunately (Beck and Lannes 2022).

Finally, we would like to mention two interesting applications of the well-posedness theory. For instance,
Alazard, Baldi, et al. (2018) studied the controllability of the water waves equations from an arbitrary
small region of the domain. Then, Alazard and Zuily (2024) proved a conservation result for water waves
that is similar to the Virial theorem of classical mechanics.

There exists a vast and plenteous literature interested in asymptotic regimes of the Water Waves equa-
tions. We do not treat it thoroughly as it remains somewhat distant to the work presented here. We refer
the reader to the book of Lannes (2013b) or the mémoire d’habilitation of Duchéne (2021) for comprehen-
sible introductions to these topics. A few of these irrotational regimes will be discussed at the beginning of
chapter 5.

II.  Boundary layers and the vanishing viscosity limit

An important part of our work will be concerned with the appearance of boundary layers in the flow
associated with viscous water waves. A possible interpretation of the results of Swann (1971) and Chemin
(1996) is that, when considering flows with very small viscosities (more rigorously speaking, flows with high
values of the Reynolds number), the only things that eventually prevent the use of Euler’s equations instead
of the Navier-Stokes system are boundaries. Indeed, the former are first-order in space while the latter
are second-order. Therefore, closing the two systems when boundaries are present is done using different
numbers of boundary conditions. As the viscosity decreases, the difficult question is what happens to the
excess condition? This is an important example of a singular limit.

To the author’s knowledge, the only available mathematical result regarding this limit in the case of
Water Waves is the one of Masmoudi and Rousset (2017), in infinite depth and without surface tension.
The second part of the present work will be devoted to investigating numerically the case of finite depth
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with either the free-slip/Navier boundary conditions or the no-slip/Dirichlet ones. Indeed, experimental
evidences of Grue and Kolaas (2017) shows that boundary layers appear below the free surface as well as
the water bed.

Why should we study the vanishing viscosity limit in the first place? As mentioned in the previous
section, both water and air are nearly inviscid fluids on large scales (high Reynolds number). Therefore,
should the limit hold, the difference between the solutions of Euler’s equations and of the Navier-Stokes
system should be small, thus motivating the use of inviscid models like the Water Waves equations, or any
of their asymptotic regimes.

Any good book on Fluid Dynamics contains an introduction to boundary layer theory from the viewpoint
of Physics (Batchelor (1967), Landau and Lifshitz (1987) or Guyon et al. (2012) being common examples).
More recent references include the grimoires of Sychev et al. (1998), Schlichting and Gersten (2017) and
Ruban (2018). Shorter introductory reviews can also be found in the introductions of the articles of Widmann
and Tropea (2015) and Nguyen van yen, Waidmann, et al. (2018).

Let us first discuss the free-slip/Navier conditions in the absence of free surfaces. On non-flat topogra-
phies, they give rise to a vorticity sheet of size ve (with v the viscosity) in which the vorticity is uniformly
bounded in v (Iftimie and Planas 2006; Iftimie and Sueur 2011). The limit » — 0 has been shown to hold by
e.g. Masmoudi and Rousset (2012). More recently, Gérard-Varet, Lacave, et al. (2018) obtained a similar
result on rough domains: the Navier-type condition seems rather well-behaved. Numerical evidences by
Nguyen van yen, Farge, et al. (2011) and Nguyen van yen, Waidmann, et al. (2018) show that this might
not remain true for a viscosity-dependent slip length (which does not seem relevant for water waves).

Unfortunately, the most physically motivated boundary conditions are of no-slip/Dirichlet type. Indeed,
fluids lying on walls tend to stick to them due to viscous interactions, thus creating some drag which is absent
from the limit Euler system. Such vorticity sheet are characterised, in contrast with the Navier boundary
layers, by a vorticity which scales as v~%. When this vorticity remains confined in the vicinity of the wall,
the size of the Dirichlet-type boundary layer is still VE $0 that, formally, we can expect convergence to a
vortex sheet. Whether this assertion actually holds remains an open question. Indeed, since the pioneering
experimental work of von Kérméan (1911), we know that there exists cases where the vorticity generated
near the wall is shed in the bulk flow. It may even happen that a turbulent behaviour arises, for which
the viscous dissipation does not disappear as v — 0, thus preventing Euler’s equation to be the correct
asymptotic system.

In his well-known 1904 article, Prandtl proposed a reduced set of equations to study the behaviour of
Dirichlet-type vortical layers, through a formal rescaling of the Navier-Stokes equations. Later, Goldstein
(1948) explicited instabilities arising in Prandtl’s equations, characterised by an adverse pressure gradient,
that is, a pressure gradient working in the a direction opposite to the flow’s direction outside the vorticity
sheet. These computations were extended to higher order by Stewartson (1958), without disproving the
conclusions of Goldstein (1948) however. The influence of this adverse pressure gradient have been studied
mathematically by Dalibard and Masmoudi (2019). In fact, the analytical literature regarding Prandtl’s
system is extensive. To name but a few, Gérard-Varet and Dormy (2010) actually proved that Prandtl’s
equations are in fact linearly ill-posed in Sobolev spaces, while it has been shown many times that the ana-
lytical framework was better behaved (see Oleinik (1966) for a global well-posedness result with a somewhat
non-physical assumption of monitonicity of the background flow, or Sammartino and Caflisch (1998a) for a
local well-posedness result). Indeed, in this latter regime, Sammartino and Caflisch (1998b) have been able
to construct solutions of the Navier-Stokes system in the half-space by gluing solutions of the inviscid Euler
system and of Prandtl’s system. The threshold between the analytical framework and the Sobolev regularity
has been found by Gérard-Varet and Masmoudi (2015) to correspond to some Gevrey space.

In light of the shortcomings of Prandtl’s equation to provide an accurate and precise explanation for
the separation mechanism, a finer model has been conjectured: the triple deck theory (Stewartson 1974) in
which the boundary layer is split into three small portions (the decks). However, this system does not seem
to behave any better in Sobolev spaces (Dietert and Gérard-Varet 2022; Gérard-Varet, Iyer, et al. 2023). A
similar conclusion holds for the Interactive Boundary Layer model, in light of the result of Dalibard, Dietert,
et al. (2017).

Whether, generally speaking, the presence of a boundary layer actually prevents the vanishing viscosity
limit to hold or not remains a complex topic. In light of Kato (1984)’s result, the convergence to Euler’s
inviscid solution is only a matter of boundary layers. More precisely, Kato proved that this result holds on
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a time interval [0, 7] if and only if the following criterion,
T
1// é’(u(t))dt—)O as v — 0,
0

is verified, with £(w) the enstrophy defined on the fluid domain  as

£(u) = /Q vl

This is the exact term arising in the energy equation for the Navier-Stokes equation with Dirichlet boundary
conditions. A most striking second part of Kato’s theorem asserts that we can replace w with a neighbourhood
of size O(v) and still have equivalence with the vanishing viscosity limit. The information on the convergence
Navier-Stokes — Fuler is thus entirely contained in a boundary layer whose size is even smaller than the
standard boundary layer thickness O(u%) (for a bounded domain €2 with Dirichlet boundary conditions
only). Later, Kelliher (2007) showed, among other equivalent formulations of Kato’s criterion, that the term
|Vu|? could in fact be replaced with the squared vorticity w?. Mathematical results that effectively obtained
a convergence result with Dirichlet boundary layers are scarce. We mention the work of Sammartino and
Caflisch (1998b) for the case of a flat plate and the more recent work of Drivas et al. (2024) regarding the
Prandtl-Batchelor theorem. An interpretation of this last result, also motivated by the pioneering work
of Stokes (1847) on oscillating boundary layers, is that an oscillating or periodic flow might stabilise the
vorticity lying in the vicinity of the wall and thus prevent separation and turbulence to happen. We shall
come back to this observation in the second part of this work in the particular case of water waves.

Before moving on, we wish to make a short détour through the theory of vortices and oceanic flows.
Indeed, singular limits associated with viscous flows are also present in other fields and it can be enlightening
to discuss them. For instance, Gallagher, Gallay, and Lions (2005) considered the two-dimensional Navier-
Stokes equations on the whole space R? whose initial vorticity is a Dirac mass, yielding an Oseen vortex. The
vanishing viscosity limit is not so straightforward in such case as the 2d Euler equation with an initial Dirac
mass vorticity is not defined (indeed, the previously mentioned result of Delort (1991) provides solutions
for initial vorticities in H~! only, and 6, € H1~¢ for every ¢ > 0). This result was later extended by
Gallagher and Gallay (2005) to consider solutions of the Navier-Stokes equations whose initial vorticity is
a (Radon) measure. Another example of singular limit is found in the oceanographical work of Dalibard
and Saint-Raymond (2018), concerned with the Munk equation. They show that separation does occur on
certain parts of the boundary and, using geometrical considerations, construct a solution converging to a
non-trivial limit system.

[II. Wave Breaking

When arriving to the shore, water waves (or, more precisely, waves crests) ultimately break. Such well-
known phenomenon happens in the open ocean too. Surprisingly, this is quite a long standing scientific
subject with very recent developments (McAllister et al. 2024). Wiegel (1964) and Galvin (1968) proposed
an experimental classification of breaking waves into four subcategories: spilling, surging, collapsing and
plunging breakers. Only the last one can be effectively modelled mathematically. Indeed, plunging breakers
are characterised by an overhanging region while the others all possess small-scales attributes (droplets,
bubbles, foam or white water), making the water-air interface description rather unpleasant (to say the
least). In chapter 2, we shall propose a definition of (plunging) wave breaking, a stronger two-dimensional
version being

Definition (Wave breaking). At timet > 0, let v(t, +) : R — R? a parametrisation of the free surface of the
wave. We say that v(t, +) has broken if its horizontal component, denoted v, (t, +) fails to be injective.

Such mathematical definition will be made clearer soon enough. We clearly see why it fails to describe
other types of breaking: in such cases, the interface cannot be represented by a parametrised curve (¢, +)
(or a parametrised surface in 3d) because of non-connected components.

Working with a parametrised interface has many advantages: it allows wave breaking (in the sense of the
above definition) but it also enables the use of lagrangian coordinates, following the fluid elements. This shall
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be put to the test in the first part of this work. Beforehand, we would like to review the physical literature
on the subject (the mathematical one has already been exposed in sec. I) for the sake of completeness.

[11.1. Instabilities triggering wave breaking

As observed in the review articles of Peregrine (1983) and Banner and Peregrine (1993), the instabilities
arising for finite amplitudes waves, leading to the breaking phenomenon, have been identified principally in
the deep water regime. Benjamin and Feir (1967) showed that deep water periodic waves of frequency w
could transfer energy at an exponentially increasing rate to neighbouring modes of frequency w + §, with
0 depending on the wave’s steepness. The resulting wavetrain is modulated (see the experimental results
shown in fig. 2 of Benjamin 1967), meaning that an amplitude-increasing envelope appears, eventually
reaching the breaking threshold.

The Benjamin-Feir instability explains an increase of amplitude happening in periodic wavetrains but fails
at explaining the breaking phenomenon itself. The superharmonics instability, originally found by Longuet-
Higgins (1978) and later confirmed by Tanaka (1983, 1985), does it. More detailed and comprehensible
accounts can be found in the works of Tanaka et al. (1987) or Jillians (1989). The underlying idea is
simple: considering a periodic wave train with wave number k, and steepness kqa, once a certain steepness
threshold kya, has been reached, the modes associated to wavenumbers k > k, (i.e. superharmonic modes)
will become unstable. The resulting effect will be a substantial decrease of the front-facing part of the wave,
coupled with an increase of the backward-facing part, resulting in a steepening which ultimately leads to
breaking. It is interested to note that his instability occurs before the thresholding 120° limitting corner
wave has been reached.

In three space dimensions, there exists another amplitude-related instability discovered by McLean et al.
(1981) (discussed in greater details in McLean 1982), called the type-II instability, resulting in a span-wise
modulation of the amplitude (as in the Benjamin-Feir two-dimensional instability).

On shallow waters, Banner and Peregrine (1993) argue that the modulational instabilities become less
important and that the steepening of the wavetrain is due to the slowly varying topography. On the
other hand, in the near-shore analysis the superharmonics instability remains important to understand the
breaking mechanism, as shown by Tanaka et al. (1987).

[11.2. Numerical simulations of breaking waves

Analytical solutions of the Water Waves problem in the presence of an overhanging region are, unfor-
tunately, currently not available. Therefore, since the original work of Longuet-Higgins and Cokelet (1976,
1978), most non-experimental results regarding wave breaking have been of computational nature. They
can essentially be split up into two categories: irrotational inviscid simulations based on potential theory
using the Lagrangian framework, and two-fluids simulations of the Navier-Stokes system using an Eulerian
advection scheme.

The fact that the two-dimensional inviscid Water Waves problem can be recast, when the vorticity is
identically zero, as a one-dimension problem on the interface, has motivated authors to study irrotational
breaking water waves as early as the seventies. Longuet-Higgins and Cokelet (1976) mapped the deep-water
problem to the unit disk embedded in the complex plane and used tools from potential theory to compute
the normal velocity numerically at each time iteration. This method was later extended by New et al. (1985)
to take in account the effects of a non-flat water bed (mapping the physical domain to an annulus instead
of a disk). Vinje and Brevig (1981) carried out a similar study on a flat topography by dropping out the
map from the physical space to the disk. Soon after, Baker, Meiron, et al. (1982) introduced well-studied
reformulations of the inviscid problem, cast in the complex plane: the vorter and dipole methods (recently
justified rigorously in Dormy and Lacave (2024), using methods of Arsénio et al. (2020)). The numerical
method of Dold et al. (1986), described more thoroughly in Dold (1992), was the first to completely set
aside the complex plane and use the Boundary Integral Method instead. This method was improved by
Grilli et al. (1989) so that, as soon as the needed computational power became available, three-dimensional
simulations were carried out (Guyenne and Grilli 2006; Pomeau, Le Berre, et al. 2008).

Since recasting the equations on the free surface cannot be accomplished in the viscous case, the Navier-
Stokes simulations only became possible at the very end of the nineties (setting aside the work of Monaghan
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(1994), based on the Smoothed-Particles Hydrodynamics method). The pioneering work of Chen et al.
(1999) successfully set what would become the standard way to simulate viscous breaking waves, that is a
two-fluids formulation with an Eulerian interface tracking scheme (like the Volume of Fluid method (Nichols
and Hirt 1975) or the level-set method of Osher and Sethian (1988)). The book of Sethian (1999) contains an
enjoyable introduction to these implicit interface representation procedures. An interesting aspect of these
methods is that they provide a description of the post-splash dynamics, even though there does not seem
to exist any theoretical justification of the accuracy of the data generated in this manner to the author’s
knowledge. For instance, Iafrati (2009) was able to study the vorticity generation (and hence, the energy
dissipation) happening right after the free surface self-intersection in 2d. The three-dimensional case was
later studied by Di Giorgio et al. (2022). Following a similar method, Lubin and Glockner (2015) observed
numerically the appearance of air filaments wraping around the cylindrical air pocket obtained when the
overhanging region of a plunging breaker falls down on itself. The capillary effects on breaking waves have
been studied thoroughly in Deike, Popinet, et al. (2015) and Deike, Melville, et al. (2016), making use of
the Gerris library (Popinet 2003, 2009), in order to tune-up a turbulence model. This last project was later
extended in Mostert et al. (2022). Hydrodynamical instabilities arising after the breaking has been triggered
were the subject of the work of Lubin, Kimmoun, et al. (2019).

Surprisingly, even though they describe the same physical phenomenon, the inviscid studies are rarely
compared with viscous ones, and wice-versa. Moreover, the scientific questions addressed using Euler’s
equations seem to be completely disjoint from the ones for which the Navier-Stokes system is used. The
numerical method described in chapter 3 aims at taking the best of both worlds.

[I1.3. The shape of water waves

The numerical methods mentionned in the previous section were not (all) developed for the sole sat-
isfaction of reproducing highly nonlinear physics. They have also been used extensively to motivate more
general physical laws. For instance, there exists a long-standing debate concerned with the shape of the
air pocket lying below the overhanging region. Longuet-Higgins (1982) overlayed a cubic upwelling curve
which matches conspicuously well its envelope. However, the fluid dynamics community seems to prefer
the v/3-ellipse of New (1983), even though the resulting comparison is far less convincing to the author’s
opinion.

A somewhat more concerned long-standing question is could a finite-time cusp-like singularity appear?
Put differently, in the inviscid and irrotational regime, starting from an initially smooth datum, could
the free-surface fail to remain C'! and see an triangular crest appear before the splash singularity occurs?
Numerical evidences of a curvature blow-up are rare, mainly because most numerical methods tend to be
regularised (using Fourier truncation or any other technique). Fontelos and De La Hoz (2010) claim to
have proved that, should such singularity appear, then it should take the form of a logarithmic spiral.
However, taking a closer look at their proof, they actually showed that self-similar solutions could lead to
such solution, but it is nowhere argued that this is the only possibility. However, starting from an initial
condition with non-vanishing circulation, they provide an interesting numerical simulation with a plausible
logarithmic singularity. Another type of curvature blow-up was conjectured in the work of Baker and Xie
(2011), starting from a second-order Lagrangian Stokes wave in deep water. The author did not manage to
reproduce their difficult simulation to put it to the test, however.

Regarding the theoretical approach of this issue, Longuet-Higgins (1980a,b) proposed analytical solutions
of the potential problem in the complex planes whose free surface (that is, the p = 0 implicitly defined curve
in his framework) approaches a cusp-like singularity (in infinite time unfortunately). An interpretation of
his work is as follows: carrying out an extension of the pressure outside the fluid domain, the cusp would
correspond to a saddle-point lying on the p = 0 line. Later, Pomeau and Le Berre (2012) studied self-similar
cone-like solutions of the free-surface Euler equation in order to obtain scaling laws followed by the solution
as the singularity appears. Whether their work applies to initially smooth ocean-like free surfaces remains
an open question.
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IV." Scope of the present work

In the following pages, we will propose a mathematical basis for a theory of wave breaking up to the
splash singularity. We will motivate a set of equations that describe this phenomenon, in the spirit of the
Water Waves equations, starting from the most basic physical laws and hypotheses. Emphasis shall be put
upon the well-foundedness of two major assumptions: neglecting viscosity and the vorticity. To be more
precise, let us describe in depth our programme.

IV.1. Mathematical modelling of Breaking Water Waves

In the first part of this work, we discuss the straight path starting from the most basic physical assump-
tions (matter is continuous, water is homogeneous, etc.) and leading to the most general models of fluid
mechanics (Euler’s, the Navier-Stokes and the Water Waves equations). This will be done in chapter 1.
Most of the subsequent chapters will correspond to short or long detours, in which these assumptions will be
motivated, disproved or bypassed, eventually leading to a different destination. In the remaining of chapter
1, the structure of the Zakharov—Craig—Sulem shall be discussed and water waves on any curved surface will
be carried out using tools from differential geometry.

The second chapter aims at extending Craig (2017)’s work on overhanging waves to parametrised free
surfaces. Indeed, in his original article, a generalisation of the Water Waves equations for parametrised one-
dimensional free surfaces is carried out, thus describing the breaking phenomenon. Loosely speaking, they
can be seen as a Lagrangian version of the Water Waves equations introduced as follows: let y(¢, +) : R — R?
a (smooth for the moment) parametrisation of the water-void interface in two dimension. Let ¢ the value of
the velocity potential on this very interface. Then both these quantities evolve through the Breaking Waves
equations (a name proposed by the author)

_ DONRl, 0

0,y = n T
T 9] 19,71
2 2
1 (0.4 1 ( DtN[~]y
oo (35) 43 CH5)"
=045 (oq) T2\ oA

with s the arbitrarily-chosen curvilinear coordinate, 7 the unit tangent vector to the interface, n = 7+

the unit normal vector to the free surface and DtN[v]¢) the curvilinear Dirichlet-to-Neumann operator.
Their generalisation to two-dimensional free surfaces will be introduced in chapter 2 (egs. 2.16). This
set of equations enjoys a non-canonical Hamiltonian structure (2.17) through the following Hamiltonian
functional,

Hiy.vi =g [ oD+ 5 [ 62)2 Ao

We will also prove that as long as no breaking happens, they can be reduced to the usual Water Waves
equations.

IV.2. On the limit of vanishing viscosity in (Breaking) Water Waves

Having motivated a set of equations for breaking waves in the inviscid irrotational regime, a natural
question is: are the effects of viscosity really negligible? The second part of this work will try to provide an
answer to this question, even though it actually raises even more questions by trying to do so.

Comparisons between the viscous and invicid irrotational solutions of the Water Waves problem will be
handled numerically. To this end, we will introduce a computational scheme to approximate the solution
of the Navier—Stokes system in chapter 3, which differs significantly from the other numerical methods the
author is aware of. Indeed, the advection is made explicit through the use of the Arbitrary Lagrangian—
Eulerian method (Helluy et al. 2005), allowing to decrease the interpolation error as to decrease the viscous
dissipation to values that were never achieved with the purely Eulerian methods mentioned in sec. III.2.
However, in contrast with these previous studies, the simulation must stop as soon as the interface intersects
itself. The implementation using FreeFEM (Hecht 2012), parallelisation and validation of this framework
will also be discussed thoroughly.
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Chapter 4 will make use of this code to investigate the viscosity effects on a one-dimensional interface,
over a flat topography. This is done comparing the viscous solution to the inviscid irrotational one, computed
through the robust method of Dormy and Lacave (2024). A sample result is shown in figure 4.6, allowing
to conjecture the convergence with the slip/Navier set of boundary conditions.

In chapter 5, no-slip/Dirichlet conditions will be imposed on a non-flat topography in order to investigate
the stability of the resulting boundary layer. This is first done for a sharp rectangular step lying at the
bottom, for which vorticity separation can be seen (fig. 5.6) but also with a smooth mollified step, for which
the separation happens as soon as a curvature threshold has been reached. The most striking aspect of the
detached vorticity is that is does not seem to disappear in the limit of vanishing viscosity limit, therefore
preventing the limitting system (should it exist) to be the (irrotational) Water Waves equations.
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Mathematical
Modelling of

Breaking Water
\WEAGE

This first part is devoted to the introduction of a unified
framework for the study of Breaking Waves.

We first introduce the physical laws of fluid dynamics
before discussing the usual Eulerian description of Water
Waves.

This description fails at describing the breaking phenome-
non. Hence, in a second time, we introduce the lagrangian
description of the water-air interface and derive a new math-
ematical model that describes overhanging waves up to the
“splash” singularity.






The Eulerian description of Water Waves

“I don’t like sand. It’s coarse and rough and irritating... and it gets everywhere”

Anakin Skywalker, In: Star Wars: Episode II — Attack of the Clones
(2002, dir. G. Lucas)

The mathematical description of the ocean has always been a most studied, yet challenging question in
Fluid Mechanics. Indeed the variety of physical, chemical and sometimes even biological phenomena at
stake, coupled with a delicate mixing of scales, obliges us to make strong assumptions (simplifications)
about the flow in order to ease the computations.

This chapter is devoted to the physical derivation of the mathematical laws that describe the ocean in
the near-shore regime (soon to be defined). We will emphasize and discuss the physical relevance of each
assumption we make along the way. We will also discuss asymptotic regimes of the obtained equations in a
rigorous manner.

The description of the water-air interface will be made in an Eulerian way, hence assuming that a wave
cannot overturn. A way to overcome this limitation will be introduced in the next chapter.

[. The Navier-Stokes equations

Let us start with a physical motivation of the Navier—Stokes equa-

tions!. We are interested in a macroscopic description of matter and
therefore suppose that it can be described as a continuum (H1). We
consider a fluid of density p(t, ) and dynamic viscosity u(t,z)?, oc-
cupying a time-varying region Q(t) of the space R**! (with dimension
d =1 or 2; see figure 1.1). For now, both p and u are not assumed
constant. Typical values of p and p in the fluids at stake are given in
table 1.1.

The state of the physical system is represented by the instantaneous
and localised velocity w(t,z) and pressure p(t,x). In order to derive
a system of partial differential equations for u, p, p and u, we follow
classical fluid dynamics books®. A more rigorous derivation of the
Navier-Stokes equations (or Euler’s equations) is related to Hilbert’s
sixth problem which remains open to this day.

[.1. Derivative of volume integrals

The formal (physical) motivation of the Navier-Stokes equations we
shall present here relies on vector calculus identities and manipulations

L Historical note: these equations were
first obtained in Navier (1821), with a
small oversight that was corrected in
his following publications. They were
later (re)obtained in Stokes (1845).

2As we shall assume the incompress-
ibility of the flow later on (hypothesis
H2), we won’t talk about the second
viscosity here.

Fluid pkgm3] w[Pas]

Water 1.00-10® 1.01-1073
Seawater 1.02-10% 1.09-1073
Air 1.29 1.81-107°

Table 1.1 — Typical values of p and
u at a temperature of 20 [°C]. The
values for the seawater are taken at
with a salinity of 35%eo.
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3See e.g., the classical books of Batch-
elor (1967), Granger (1995), Johnson
(1997), Lamb (1932) or Landau and
Lifshitz (1987) in english; Guyon et al.
(2012) or Huerre (2012) in french.
lie. at time t, the map DIFRE V-
V(t) ¢ R¥ is C1, bijective with C!
inverse.

g

Figure 1.1 — A general domain
Q(t) containing the fluid.

Y space

T space

Figure 1.2 — The configuration of
lemma 1.1.

2The chosen notations about vector cal-
culus are described in appendix B, in
which are also listed some usefull iden-
tities.
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of volume integrals. Before we begin this process, let us prove an
extremely usefull identity. Let 1 a bounded subset of R4l Let %,

a C'-diffeomorphism from the fixed volume V to a bounded subset
V(t) € R¥*! with C! time dependency (see figure 1.2)!. Let us define
the velocity of the points x in the domain V,

v(t,x) = [% ° Zt_l} (x)

b

We are then able to prove the following result, sometimes called Reynolds
transport theorem,

Lemma 1.1 (Reynolds 1903).

d
dt ( V(e Jt.) d"") - /m) 0f(t.) + V- (f(t,2)v(t,@)) de

Proof. From the definition of ¥,, we have
/ ft,x)de = /f(t, Et(y)> det (Jy2t> dy,
V(t) W

-
where J, 3, = (Vy2t> is the Jacobian? of the transformation ¥,.
The second integral having a domain independant of ¢, we can intervert
the derivative and integral sign,

d
at </V(t) ft,x) dm) /ﬁ@tf(t, Et(y)) det(JyEt) dy
+/|:Vf<t72t<y>> .8t2t(y)} det(JyEt) dy
%
+/f(t,2t(y)) 9, det(Jy2t> dy.
%

The third integral can be related to v through the use of Jacobi’s
identity for differentiating a determinant,

0,((det(3,%,)) = det(3,%,) tr (3,2) -8, (3,%)]

= det(3,8,) (1,550 (w)) - 3, (5, (w)]
= det(J,5,) tr :Jm ((atzt) o Zt_l(ac)) o Zt(y)]
= det(J,%,) tr[Tgo(t, ()]

= det(J,%,) tr[V,0(t, 2, ()]

= det(3,5,) V,, - o(t.Z,(n)),

where tr(A) denotes the trace of the matrix A. We have use the fact
that V%, is invertible at all times, the fact that tr(4) = tr(A") and
the properties of the inverse of a Jacobian matrix. Doing the reverse
transformation we find that

d
T (/V(t)f(t,m)dcc> —/V(t>8tf+v.Vf+fV.v



— [ as+9-(10).
V(t)

as desired. O
The lemma 1.1 will be used extensively in the present work. Ob-
serve that for a solenoidal vector field v, i.e. a field such that

V.-v=0,
we have another relation
V. (f'v) =wv-Vf.

Remark 1.2. The regularity of the boundary 0V (¢) doesn’t change
the result. By extending the diffeomorphism to a small neighborhood
outside the boundary, we can bypass this issue.

When v = u the velocity of the fluid, then V(%) is seen as moving
with the flow from the fixed reference frame of the observer. This is
called the FEulerian point of vue, which shall be investigated in the
present chapter. On the other hand, when v = 0, the reference frame
is that of the fluid elements!. This is the Lagrangian® point of vue,
more suited to the study of breaking waves, as we shall see. When v is
neither u nor 0, we shall speak of the Arbitrary Lagrangian-FEulerian
(ALE)? point of vue, as will be used in the numerical method described
in chapter 3.

[.2. The continuity equation and incompressibility

Historically, the first mathematical law of fluid dynamics stems
from the conservation of mass. It can arguably be traced back to da
Vinci’s pioneering analogy between sections of trees and rivers’ flow
rates®. Until the end of this chapter, we use the Eulerian (v = u)
point of vue. Let V(t) C Q(¢) a bounded volume with closed boundary
OV (t) which moves with the fluid. The massive elements originally in
1(0) will be in V(t) by definition. Hence the total mass in V(t), defined

' M[v(t) = /

V(¢)

p(t, ) dw,

is conserved. The physical interpretation is that each fluid element
keeps the same mass throughout the experiment. Owing to lemma 1.1
with v = w, this means that

d d
&M[V(t)] = ( /V . p(t,m)dm)

:/ op+V- (pu)
V()

=0 by hypothesis.

by lemma 1.1

As this must be true within each material volume®, we have the con-
tinuity equation in the fluid,
0,p+V - (pu) =0. (1.1)

Let us now assume that the density of the fluid in consideration is
homogeneous (H2),

p(t.@) = pg,. >0 in V(t),

Figure 1.3 — The arbitrary mate-
rial domain V(t) C Q(¢).

INote that since we have made the con-
tinuum hypothesis (H1), we cannot
speak of fluid particle. Instead we use
the term fluid element, which can be
thought of as an infinitesimal volume
of fluid.

2Lagrange (1781)
3Hirt et al. (1974)

4 «All the branches of trees, each degree
of their height, combined, are equal to
the size of their trunk.

All the branches of waters, in each
degree of their length being of equal
movement, are equal to the size of
their origin”

— Leonardo da Vinci (1500)

Translated and cited in the re-
view article of Marusic and Broomhall
(2021).

54.e. each volume V(t) moving with ve-

locity w.

31



fluid element 2

‘n

fluid element 1

—

Figure 1.4 — The superficial force
applied by the fluid element 2 on
the fluid element 1 in the inviscid
case.

IRecall that a fluid element is in fact
an infinitesimal volume.

2Indeed,

/ — plt, y)RdS(y) =

oV (t)
:/ —p(t, y)1L - A(t, y) dS(y)
Jov(t)

_ / o(t,y) - Alt,y)dS(y)
oV (t)
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at all time ¢ > 0. In the large-scale analysis of the ocean and of the
atmosphere, this is unambiguously false. The density of water and
air are stratified in such regimes. However, as we are interested only
in the near-shore oceanic scale, the density fluctuations of both these
fluids can be neglected on short time scales. This important hypothesis
quickly leads to the incompressibility condition,

V.-u=0. (1.2)

Should we consider a two-fluids interface (e.g. water and air), each
fluid will be incompressible in its domain. No mixing could happen
without transgressing the homogeneity assumption. Hence we must
also suppose that, in the presence of an interface, the two fluids under
consideration are immiscible (H3).

[.3. The momentum equation

A second law of fluid mechanics can be obtained from Newton’s
fundamental law of dynamics applied to a fluid element. Let us once
again consider a material volume V(t). The fluid’s momentum lying
within V(t) is defined as

Pv(t) = / p(t, z)u(t, ) dx.
V(t)

Its rate of change is related to the force which is exerted on each fluid

element inside V(t),

gp[v(t)] = /wt) F(t, ) de. (1.3)

Typically, the total force can be split into an exterior part pg (gravity
in our case), only depending on the fluid’s nature and state via the
p prefactor, and an intrinsic contribution from the neighboring fluid
elements V - o, with the tensor o called the stress tensor.

Why the divergence? Since the intrinsic contribution stems from
the other fluid elements (fig. 1.4), it corresponds to a force applied on
the boundary of the element' under consideration. The stress tensor
o represents this very boundary force and Gauf3’s theorem gives us the
corresponding volume force through

/ Fboundary = / G(ta y) : ﬁ'(tv y) ds(y> = / \'A U(tv x) dz.
V) o (t) Vi)

Intuitively, the stress o depends on the fluid’s local state and is thus
a (possibly non-linear) function of its properties p, p, u and u. Let us
investigate the easiest shapes of o commonly used.

1.3.1. Stress tensor for inviscid fluids. The simplest element-wise
boundary force we can think of is the pressure p. It is applied in the
direction perpendicular to the interface in the direction pointing inside
the fluid element (fig. 1.4), resulting in?

O'(tv :I:) = —p(t, :L‘) ’ Ildxda

where 1, , is the identity matrix in dimension d = 2 or 3. This leads
to the following volume force

/ Fboundary = / 7Vp(t’ CC) dz. (14)
V) V()



Putting (1.3) and (1.4) together and applying lemma 1.1, we obtain
the following integral equation,

/ at <pﬂu.u> +V. (pﬂu.u ® ’LL> = / *Vp + Pau.9 (15)
V(t) V()

As in section 1.2, the control volume V(¢) being arbitrary, the inte-
grands on each side of (1.5) must be equal everywhere in the domain
Q(t),

at (pﬁu.u) +V. (pﬂu.u ® u) = _Vp + Pu.9-

Making use the incompressibility of the flow (1.2), due to the homo-
geneity hypothesis H2', this can also read

o,u + (u-V)u:—pLVp+g. (1.6)

flu.
The couple (1.2)—(1.6) are Euler’s equations®. They describe the mo-
tion of inviscid fluids. Both water and air have small viscosities (table
1.1) so it would seem like a good idea to neglect it. In forthcoming
chapters, we shall discuss the well-foundedness of this assumption in
details. To put it in a concise manner, things are not that easy...

[.3.2. Stress tensor for Newtonian fluids. A major drawback of
Euler’s equations (1.2)—(1.6) is that a fluid element traveling parallel
to another does not drag it along. This is at the heart of d’Alembert’s
paradox?.

To introduce this physical phenomenon, one must take into account
the effects of viscosity into the stress tensor. The simplest possibility
is to assume that the viscosity is homogeneous,

w(t, ) = pg, everywhere in Q(t), (1.7)

(typical values of ugq, for water, seawater and air are given in table
1.1) and proportional to the symmetric part of the gradient tensor
(H4), so that* (see fig. 1.5 for a schematic representation)

O'(t, m) = *p]ldxd + 2Mﬂu.s<u>7 (18)
where ) .
S(u) = 3 {Vu—&- (Vu) }

A fluid for which this holds is said to be newtonian. Its kinematics is
given by the following equation in the material volume V(¢)?,

| olonw) + V- (prusu) -
V(t)
= / —Vp+ :u’ﬂu.Au + Pau9-
V()
As it should hold for all material volumes V(t), we actually have

ou + (u . V)u = —LVp + g Au+g.

1.9
PAu. ( )

The couple (1.2)—(1.9) are called the incompressible Navier—Stokes
equations, which describe newtonian fluids. The quantity

Heu.

Vay, =
PAu.

u.

I The continuity equation (1.1) can also
be used and yields the same result,
with a non-constant positive p.

20riginally obtained in Euler (1757)

/

fluid element 1

’\/

Figure 1.5 — The superficial force
applied by the fluid element 2 on
the fluid element 1 in the viscous
case.

3d’Alembert (1752) showed that an in-
compressible inviscid fluid cannot ap-
ply a drag onto a solid body.

4For a compressible fluid, the stress
tensor has more terms and another
parameter called the second viscosity.
This is of no use here.

5Indeed,
1
V. -S(u) = §Au

since the incompressibility condition
(1.2) quickly yields that

v (vu) =o.
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is the kinematic viscosity of the fluid.

Remark 1.3. In both Euler’s equations (1.2)—(1.6) and the Navier-
Stokes equations (1.2)—(1.9), the time evolution of the pressure is
not explicitly given, .e. there is no equation for d,p. In fact the
pressure evolves in order to ensure the incompressibility of the flow;
it can be seen as a Lagrange multiplier enforcing the incompressibility
constraint. This statement can be made rigorous (Evans 2010, sec.
8.4.4, thm. 6).

II.  Boundary conditions

We now discuss the various boundary conditions that are typically
used in the study of Water Waves in an Fulerian framework. To this
end, let us introduce the two space domains 2, (¢) and Q,(¢) contain-
ing, respectively, the water and the air, see figs. 1.6 and 1.7 below.
Note that these domains are time-varying. They are open in R%*1,

Q

T

Figure 1.6 — 2d schematic representation of the water domain Q. (¢), the air domain 2, (¢) and the soil domain £2,.

Their interfaces are I';(¢) and T';.

1 Mathematically, this amounts to

Pl(t) = Qw(t> n Qa(t)y

and L

Fb = Qw(t) n Qb'
The latter does not depend on time
even though Q. (t) does. This is be-
cause we assume that no contact be-
tween the air ©,(¢) and the topogra-
phy €, happens.

34

We denote by I';(t) the water-air interface and by I'y the bottom
boundary of the domain!, i.e. the contact surface between the water
and the soil ;. We suppose that there is no interface between the air
0, (t) and the bottom Q, i.e.

Q)N =0. (H5)

The Euler equations (1.2)—(1.6) or the Navier-Stokes equations (1.2)—
(1.9) describe the water in the domain Q(¢) and the air in Q,(t).
Whether the former equations are preferred to the latter is one of the
fundamental question that will be discussed in the present work.

Remark 1.4. We assume the existence of a bottom boundary I', and
a soil domain €, see fig. 1.6. We could also have supposed that the
water column extends to infinity in the z negative direction. This is
called the deep-water regime. As we will be interested in the wave
breaking phenomenon, which happens mostly near the shore, we shall
not discuss the deep-water regime, only motivated for the study of the



the open ocean.

Since Euler’s equations are first-order in space while the Navier-
Stokes equations are second-order, different boundary conditions must
be used in both cases. We shall discuss both separately.

[I.1. The inviscid boundary conditions

Should we assume that both water and air are inviscid (H6), Eu-
ler’s equations must be used in both €, (¢) and Q,(¢). On the bottom
boundary I';, we suppose that water does not penetrate the solid bot-
tom,

u-ny, =0 on I'y, (1.10)

with 72, the unit vector perpendicular to the topography I';, pointing
into Q,(t), see fig. 1.6. This will be referred to as the impenetrability
condition later on.

Figure 1.7 — 3d schematic representation of the water domain Q2 (t), the air domain Q,(t) and the soil domain Q.

Their interfaces are I';(¢) and T',.

On the top interface, we assume that the pressure is continuous
during the change of phase, aswell as the normal component of the
velocity?,

Pa=py and u, n=u, -n on T, (t), (1.11)

with 7 the unit vector perpendicular to T';(¢), pointing into the water
domain Q(¢)2. This will be called the dynamic boundary condition
afterward.

Finally, we need a boundary condition for the air. To this end, we
suppose that this fluid is at rest far from the free surface,

u, =0 at z — +00. (1.12)

I'We cannot enforce the continuity of
the tangential component of the veloc-
ity through the interface without get-
ting an ill-posed problem (7.e. absence
of solution). Indeed the jump of tan-
gential velocity is fundamental. It cor-
responds to a vorticity sheet localised
on ;(t), which will be studied after-
ward.

2We use u,, and p,, (respectively wu,

and p,) to denote the solution of Eu-
ler’s equations in the water domain
() (resp. 2, (1)),
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LT And when they do not, the resulting
boundary layer vorticity is orders of
magnitude smaller than in the no-slip
case. See Iftimie and Planas (2006)
and Iftimie and Sueur (2011).

air

Vv

water

Figure 1.8 — Schematic represen-
tation of the development of the
Kelvin-Helmholtz instability at the
interface between water and air.
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[1.2. The viscous boundary conditions

Should we use the Navier-Stokes equations instead, the boundary
conditions (1.10) and (1.12) remain valid while (1.11) must be slightly
modified and some new conditions must be added.

On the free surface I';(t), we now assume that both component of
the velocity are continuous,

U, —u

on I';(t), (1.13a)

w a

and the normal stress is also continuous through the interface,
—PoT + 20, S(uy )N = —p, 1 + 20, S(u, )1 onT;(t). (1.13b)

On the bottom, two viscous conditions can be added. First the
Navier conditions, where the impenetrability (1.10) is supplemented
with the contraint that the tangential stress vanishes,

uw'nb =

fip x S(u,) Ay = 0 on I[';. (1.14)

These conditions are known to prevent the appearance of a boundary
layer in most cases!. However they are difficult to motivate from a
physical perspective. Instead we could use the mo-slip, or Dirichlet
boundary conditions, saying that the velocity vanishes identically on
the bottom,

u, =0 on T';. (1.15)

This condition, more physically relevant, shall create a boundary layer
localised in the vicinity of the bottom I',. We will discuss in chapter
5 its stability in order to conclude about the use of the irrotationality
assumption (H11, yet to be discussed).

I1.3. Neglecting the air

The boundary conditions (BCs) discussed in secs. II.1 and II.2
can be greatly simplified should we neglect the effects of air. Before
discussing this assumption (HT), let us state the resulting BCs. For-
mally, this corresponds to letting p, — 0 and p, — 0.

I1.3.1. Inviscid BCs without air. The impenetrability (1.10) con-
dition is not affected. Moreover, the far-field condition (1.12) makes
no sense anymore. In the end, there the dynamic condition remains,
taking the easier form

Py =0 on T';(t). (1.16)

The vacuum above the water exerts no pressure over the interface.
Another approach to this BC is to assume that air only applies a con-
stant pressure p,, the atmospheric pressure, on water. Since pressure
only appears in Euler equations (1.2)—(1.6) through a gradient, it is
possible to redefine the pressure up to the constant p, without any
impact on the velocity. This also yields (1.16).

11.3.2. Viscous BCs without air. Redefining p, up to the atmo-
spheric pressure p,, as was done above, and formally letting p, vanish,
we get the so-called stress-free boundary conditions

P — 21, S(uy,) -n =0 on T, (). (1.17)

The water stress-tensor o, vanishes identically on the water-void in-
terface.



To what extent is H7 well-motivated in the theoretical study of
water waves? The answer is rather simple: it is rarely the case. In-
deed waves are mainly generated by wind during a process that starts
far from the shore!. The idea is simple: looking at (1.13), we can see
that variations in the air pressure on the free surface generates per-
turbations in the water. This phenomenon coupled with the Kelvin-
Helmholtz instability (fig. 1.8) arising at the interface between to fluids
in the presence of a jump of tangential velocity, explain the appearance
of waves at the surface of the ocean.

Hence, it seems unreasonable to neglect the effects of the air to
study a phenomenon generated by these very effects. However, on
short time-scales, in the near shore analysis and before the splash? has
occured, we will rely on this assumption. In such conditions, air is
responsible for the detachment of droplets near the crest of the wave,
in the form of a spray. This hypothesis amounts to assuming that this
won’t have any impact on the overall shape of the wave. Furthermore,
since no breaking will be permitted in this chapter (H8 below), that
will not be an issue.

II.4. The kinematic condition, Eulerian advection

It has already been emphasised that both the water and air do-
mains, Q(¢) and ,(t), are time-dependent. Indeed the interface I, ()
moves with the fluid; it is composed of material fluid elements. Hence
one must prescribe an advection scheme for this free surface. Most
theoretical studies use the lagrangian framework, where the interface
corresponds to the zero-value of a certain function F': R x R? - R3

r) = [Ft )] ({03):

The corresponding advection scheme is to solve the transport equation
for F', in both fluids Q,(t)UT,(t) UL, (¢), with velocity u., built from
Uu,,, U, and their boundary values,

O,F +u,, -V, F=0. (1.18)

This advection scheme is at the heart of the eulerian framework, sub-
ject of the present chapter. It is the basis of most numerical methods
that have been used to study breaking water waves in the viscous case:
the level-set method and the Volume of Fluids (VOF) method?.

However this general framework is not suited for theoretical studies
as is. A more tractable form can be made assuming that no breaking
occurs (H8), i.e. supposing that F has the following shape®

F(t,x) = F(t,Z,2) = = — h(t, ©). (1.19)

The fact that the free surface is represented by the graph of a function
h prevents the use of this framework to study breaking water waves,
where h would need to be a multi-valued function. We shall see in
chapter 2 that dropping out the eulerian formalism®, and replacing it
with a lagrangian scheme, allows us to overcome this difficulty.

For now, let us rewrite the transport equation (1.18) using the
hypothesis (1.19) above,”

d,h+1i-Vh=u,, (1.20)

—

with V = (0;,0,) in 3d and V = 9, in 2d. Of course eq. (1.20)
only makes sense when z = h(t,2). It is called the eulerian advection

1Janssen (2004, ch. 3), Kinsman
(1965), Lamb (1932, art. 350).

2The moment the interface of the wave
intersects itself after having broken,
see fig. 1.14 below.

F\Iotation. In this work, we make a
distinction between vectors in R4+,
denoted in boldface like u, and oth-
ers lying in R?, with an overhead
arrow 4. The latter will be usefull
to represent quantities lying on the
interface I';(¢) or on the topography

Iry. J

3Some hypotheses must be done on
F in order to have a well-defined d—
dimensional interface. Indeed F =
0 would give a space-filling free sur-
face (whatever that means). In order
to avoid such pathological cases, it is
common to assume that F is (weakly)
differentiable once with non-vanishing
gradient,

|V F(t, @) #0

for all @, at all time ¢t > 0. Such func-
tion can be constructed using e.g. the
etkonal equation.

4see e.g. Chen et al. (1999), Deike,
Melville, et al. (2016) and Deike,
Popinet, et al. (2015), Di Giorgio et
al. (2022), Mostert et al. (2022).

5Recall that vectors in R? (d = 2 or
3) are denoted using boldface symbols
(e.g. w), while vectors in R*! are
written with overhead arrows u.

6In the following, the eulerian formal-

ism shall referred to the advection
equation after (1.19) has been as-
sumed. The general eulerian view-
point does not have such flaw. The
issue here is (1.19)
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74 corresponds to the zy—projection of

the velocity u,

U= u, ford =1,
&
Uy

In the same manner, V

and (9, Oy)T in 3d.

for d = 2.

is 9, in 2d

z

L Air is not only composed of dinitrogen
molecules.

air

Resulting
force

water

C‘D: H,O molecule
@: N,

Figure 1.9 — Physical motiva-
tion of the surface tension: the
molecular forces applied on a wa-
ter molecule lying on the surface.

flzg)

molecule

R.[f](x)

Lo

T

Figure 1.10 — The curvature ra-
dius R_[f] of a function f at point
xy. The circle tangent to the graph
of f at point z, is shown in blue.
Its radius is exactly R,[f].
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equation. Most authors consider it as a boundary condition, referred
to as the kinematic condition, even though it is an evolution equation
by itself.

11.5. Surface tension

The capillary effects can be taken into account inside the dynamic
boundary conditon directly (or neglected (H9)). Physically, surface
tension arises from differences in intermolecular forces corresponding
to water-water, dinitrogen-dinitrogen and dinitrogen-water molecular
bonds!. Indeed the latter is weaker, which leads to a superficial force
on the free surface which tends to decrease the curvature, i.e. to
smooth out the boundary T';(¢) (fig. 1.9).

Let us define the signed curvature s[f] of a twice-differentiable
function f € C?(RI*1),

O f

1+ @f)?;
L+ (0,0)2) 0y, f + (14 8, 1)?) 0y f — 20,10, 0,1

(1+ 0,02 +(0,0)2)"

3 ’
2

respectively for d = 1 and d = 2. When d = 1, the inverse of the

curvature is called the curvature radius R,[f] = (n[ f]) ' It corre-
sponds to the radius of the circle tangent to the function f at a point
x (fig. 1.10). When d = 2, the curvature is the sum of the inverse
curvature radius in the z direction and the inverse curvature radius in
the y direction.

The effects of surface tension can be encompassed in the dynamic
boundary conditions (1.16) and (1.17) directly. At the interface be-
tween two fluids, surface tension is represented by a jump in normal
stress proportional to the curvature. When there is only one fluid, this
leads to

Py = =Ykl (1.21a)

on T',(t) for, respectively, an inviscid fluid and a viscous fluid. The
factor 7, is the surface tension coefficient of the water-void interface.
Its strength is of the order of 7 - 1072 [N - m~!]. For small values
of 7, the effects of curvature tends to smooth out the interface. It
will be argued in chapter 4 that this superficial force is the prevailing
regularising mechanism, an order of magnitude stronger than viscosity.

[II. Non-dimensionalisation®

Euler’s momentum equation (1.6) is invariant under the following
rescaling of the variables

u(t,z) — )Flu()\t,)\zw) and p(t,x) — )\’2p()\t,)\2w>, (1.22a)

for A > 0. This is also trivially the case of the other constitutive
equations (1.2), (1.10) and (1.16). However the Navier-Stokes mo-
mentum equation (1.9) does not follow this scaling without redefining



the viscosity. The eulerian surface advection equation (1.20) can also
be rescaled in the following manner

h(t, ) = A72h(At, A22). (1.22b)

These scale invariance properties gives a hint at the possibility to non-
dimensionalise the set of equations we have obtained in the last two
sections.
In order to carry out the complete non-dimensionalisation of the
equations, we need to introduce a certain number of typical physical
scales. We shall use most of the ones of Johnson (1997)!. Even though We could use more fiducial scales, as
this choice is completely arbitrary, doing it in this manner has the in Lannes (2013b), or less.
advantage of letting a few dimensionless parameters appear, most of
them shall be usefull to investigate the asymptotic regimes.

Scale corresponding to used to redefine
A Maximum distance between two crests (i.e. the maximum wavelength) Ty, T

ho Average depth of the water column z,h,b

ehg Typical size of a wave n

5)\\/g_ho The velocity potential’s typical order of magnitude 10}

ey/ghy  Horizontal velocity of a linear shallow water wave Uy, Uy, T

Ep\/gTO Vertical velocity of a linear shallow water wave U,
Pwdho Mean pressure on the bottom P
A/ \/g_ho Period of a linear wave in shallow water t
ev/ghy! Scaling of the vorticity w

Table 1.2 — The chosen typical scales to non-dimensionalise the equations. The parameters p and € will be defined
in eq. (1.24).

T

Figure 1.11 — Graphical definition of the typical scales used to non-dimensionalise the equations, in 2d (the 3d case
is identical).

The various quantities we will use are defined in table 1.2 and F\Iotation. The superscript , used
represented graphically in fig. 1.11. For instance, we introduce the to represent non-dimensional quan-

new non-dimensional space variables 2 and y* as tities, is a non-standard notation.
It is pronounced “natural” so it

seemed like a good idea to use

x = At and y= )‘yh' (1'23) it. It is difficult to find a non-

overwhelming notation to carry out

Other non-dimensional variables 2%, h%, b%, u, t* and p* are defined in a the non-dimensionalisation. ~ We
similar manner from table 1.2. We also define the wave height 7 from tried our best to keep it simple. |

h(t7 i:) = hO + 77(75, :f)
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ho

Figure 1.12 — The linear wave so-
lution: interface n and velocity w.

lsee e.g. Johnson (1997), sec. 2.1.

2To understand the h, prefactor in
(1.25), recall that ehy = a.

3Indeed in the shallow water regime

pn<<l,
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w(k) ~ k+/ghyg

cosh(kz)

1

sinh(khg) ~ tanh(khg)

sinh(kz)

sinh(khy)

~ 1.

~

1

2mp

We can define the non-dimensional version 7 from table 1.2 too. The
two non-dimensional parameters € and p are

€= the non-linearity/steepness parameter, (1.24a)

@
0

ho
= the shallowness parameter. (1.24b)
[I1.1. The linear wave solution”

In order to motivate the typical scales chosen in table 1.2, we will
recall a well-known solution of the incompressible free-surface Euler
equations (1.6, 1.2, 1.20, 1.16, 1.10). Indeed, using a parameter
asymptotic expansion argument up to first order in ¢, we find a space—
and—time periodic solution.

We work in 2d and suppose, without proof, that w,,u,,p and 7 can
be expressed as a power series in ¢,

+00
77(75’ Jf) = Z Sjnj(t7 J)),
7=1

and similar for u,,u, and p. We assume that the topography is of
order 2, b = O(¢?). Inserting this into (1.6, 1.2, 1.20, 1.16, 1.10), we
get the following first-order solution’

. (t,z) = hy cos(k:x — wt) (1.25a)
cosh(kz)
= why -2 s (kr — 1.2
u, 1 (t, @, 2) = why Sinh(hy) cos(km wt) (1.25b)
sinh(kz) |
= _— — 1.2
u, 1(t,z,2) = why Sinh(Khy) sm(kx wt) (1.25¢)

with k = 27/ the wave number and the (angular) frequency

w(k) = \/gk - tanh(khg). (1.25d)

This solution is plotted in fig. 1.12.2 Eq. (1.25d) is the linear disper-
sion relation. When z ~ h and pu < 1, we have?

m~a Uy ™~ EV ghg Uy1 ™~ ER ghg,

in accordance with table 1.2. This also explains the scaling of the time
variable ¢ from the angular frequency w.

I11.2. The non-dimensional Euler problem’

Inserting the substitutions of type (1.23) into (1.6, 1.2, 1.20, 1.16,
1.10) yields the non-dimensional form of the free-surface Euler equa-
tions. We shall detail the method on the momentum equation (1.6).
To do so, we will make intensive use of the following lemma.

Lemma 1.5 (Non-dimensionalisation). Let the substitution © = xx*
and f € C' a function. Let f*(z%) = f(z), then

0, f(x) = m—taﬂfwmﬂ).



Proof. This is a direct application of the chain rule.! O

Using redefinitions like (1.23), defined from table 1.2 and applying
lemma 1.5, we carry out the non-dimensionalisation in a straightfor-
ward manner. Indeed we have

Ol = € g O,ii° O, =¢e p?g thuhz
(ﬁ-@)ﬂzs%g (viih -?“)ﬁ” (ﬁ@)uz =e2u%g (ﬁ“ @Qui
u,0,1 = e%ug ui@zqﬁ” u,0,u, = c*u’g ui@zuui

Vp = popg Vip* d.p = pyg 0.:p°

Inserting this into (1.6), one needs to separate the (z,y)—component
from the z—equation as they scale differently, yielding?

1 =,
i’ + ¢ (uf - VH )it = - Viph, (1.27a)
b y 11 1
attuz -+ 5</Uzh . Vh>uz = 7gﬁaztph — @ (127b)

The factor eu? appearing in eq. (1.27b) can be seen as a Froude
number Fr2, corresponding to the ratio of horizontal velocity and group
velocity in shallow water.

Applying the same procedure to (1.2, 1.20, 1.16) quickly yields
the following non-dimensional equations

Viul=0 with prefactor

ev/gh
Ag 0 (1.27¢)
Opn® + i’ - Vit = u, with prefactor ep+/ghy, (1.27d)
p'=0 with prefactor py,ghg. (1.27e)
Regarding the impenetrability condition (1.10), we will suppose that
it can also be represented as the graph of a, at least once differentiable,
function (H10)3. This condition will be lifted in the following chapter.
The vector normal to Iy is given by*

= __ {_%] S {_Eﬁth] . (1276
\/1+ be /14 \e@hbhf

This gives the non-dimensional impenetrability condition,
etif - Vbt = ﬂui, (1.27g)

with prefactor €4/ghy, on T’y = {z = b(Z)}.
The system (1.27) shall be referred to as the non-dimensional free-
surface Euler problem.

I11.3. The non-dimensional Navier-Stokes problem’

The method used to carry out a non-dimensional form of the Navier-
Stokes equations (1.9, 1.2, 1.20, 1.17, 1.14) is identical to that of the
previous section. However, one needs to be cautious with the viscosity
term. Indeed one has

At = 6\]/:;)70 [/‘2 (aa:t:rt + 8yty:)ah T aztztah}

'Indeed, let y(x") = x4z the change of
variable. We then have f! = foy so
that

B0 fi(2) = D,5y(a*) - (0, F o ) (27)
=g (0,f o y) ().

Non-dimensionalisation is just a mat-
ter of pushforwards and pullbacks (ap-
pendix A).

2the cancelled prefactor of (1.27a) is

€LY,
while the prefactor of (1.27b) is

eplg.

3That is, there exists b € C! such that
T, = {(Z,b(#)) for all & € R%}.

4following an argument similar to that
of sec. 11.4.

Rotation. In 2d (d =1),

Vi=9,.,
vi=[0,:,0.]",
while in 3d (d = 2),
Vi = [al'"’ay"]t’
t
Vi =[0,,0,,0,] - N
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’T\Iotation. The p rescaled deriva-
tive and vector fields are defined as

VEL = [u@z,azq],

uj, = [0, put],
so that

AL =V .V

These rescaled quantities will some-
times appear by themselves, as
in the definition of the non-
dimensional velocity potential gZ)J

F\Totation. We recall the defini-
tion of the various non-dimensional
numbers defined up to here,

n= N shallowness
a . .
£=— non-linearity
hg
hg+/gh
Re = R0V 9o Reynolds
I/W
hoA
We = PwI%0 Weber
Tw
>\2
Bo = PwI7 Bond

£ |

!The no-slip/Dirichlet condition re-
mains identical. The normal vector is
already non-dimensional so it does not
change. However it depends on € and

/’1'7
n=

1 [,E,ﬁnnn}

/14 ‘eu@ln”’ 1

2 Aside from the bottom boundary con-
dition whose effects will be discussed
in chapters 4 and 5
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e~/ gh

A’LLZ = T%O |:M2 <az“zh + 8yuyu)ui + azqzqui] .
Inserting this into 1.9 and dividing by the same prefactors than those
of (1.27a) and (1.27b), we see the following non-dimensional number

appear,
Vg, 11
= —— (1.29)

phoy/ghy 1 Re’
where Re corresponds to the Reynolds number, quantifying whether
the viscous effects are important in the flow (Re ~ 1) or not (Re > 1).
This yields the following non-dimensional momentum equations

o o I e RN
Opi? +€(uh : V“)uh = Vip + ﬁ;Ah a',  (1.30a)
1 11
8ttui + a(uh . Vh)ui =—=  Oup — — +t Re Aiuz, (1.30b)

where the non-dimensional Laplace operator is given by
AEL = /1*2 (8xta:t + 8y y1> + 0y

The non-dimensional stress-free (1.17) and Navier (1.14) conditions’
are

pin — Ri {Vu u;, (V[Lu/j.) } n=0

X {Viui + (Viui)ﬂ =0

The non-dimensional gradient tensor is defined as

V#u#

pVii Vi
i\t b
(@n u“) 1o uz

The system (1.30,1.27d) will be called the non-dimensional free-
surface Navier-Stokes problem afterward. In most cases, we will set
w = ¢ =1 for simplicity. The resulting Euler system will be identical
to the dimensional one (with the added § superscript) due to the scaling
property (1.22). On the other hand, the Navier-Stokes one will have
a prefactor Re ! in place of the viscosity v,,. Formally, as Re — 400,
both problem become identical?. As we will see, this does not mean
that Euler’s solution will correspond to the Navier-Stokes solution as
Re = +o0...

IIT1.4. Surface tension’

Should we include the surface tension into our model, i.e. lifting
hypothesis H9, another non-dimensional coefficient shall appear. In-
deed, denoting by " the curvature with the couple (z,y) replaced by
the couple (z, ), we rapidly get that

slepn’] K epn]

Vw ] _ Yw
We uBo

KN = ————~
Pwdho PwdhoA

wfepu] =

with We Weber’s number and Bo stands for Bond’s number, related
by a factor p in the special case of water waves with this scaling.



IV. Irrotationality

A major simplifying hypothesis we can make is to “assume that the
flow is irrotational” (H11), i.e. assuming that the vorticity vanishes
identically in Q(t), at all time ¢ > 0. We will put this assumption
to the test in chapter 5. It is commonly made in theoretical stud-
ies of water waves but rarely motivated from a physical perspective.
We postpone this discussion for now while carrying out the resulting
simplifications.

IV.1. The vorticity

Vorticity is a 2-form® built from the fluid velocity u using the
exterior derivative d as such
w= d(ub>. (1.31)
This definition has the advantage of being independant from ambient
space dimension d. In two-dimensional space (d = 1), this yields the
well-known definition (up to an isomorphism)

=-V.ut=0,u, —0,u,.

In 3d (d = 2), @ is isomorphic to the usual (pseudo)vector defined
through the curl,
w=Vxu.

In general, should we work in higher dimension, w would be isomorphic

to a vector in R<d§l>, i.e. an skew-symmetric matrix. We see that with
the language of differential geometry we can bypass such technicalities.
This also highlights the covariant nature of the vorticity.

Assuming irrotationality amounts to assume that

w=0. (H11)

A consequence of Kelvin’s circulation theorem? is that, should this
be the case initially in an inviscid fluid, then it would remain so at
subsequent times. To see this, let us consider a surface § C 2, (¢) and
define the associated circulation

F[S] :?g‘strds:/scf;.

Now, if §(t) depends on time, has a piecewise once-differentiable bound-
ary, and is a material surface, meaning that every constitutive point
moves with the fluid at velocity u, we are able to state the conserva-
tion of the circulation in time. This is Kelvin’s circulation theorem.

Theorem 1.6 (Kelvin 1869). Let $(t) a material surface with piece-
wise C* boundary O8(t), moving in an incompressible and inviscid
fluid. Then T is conserved,

dr

— =0

dt
O

Proof. In order to establish Kelvin’s circulation theorem, we cannot
use Reynolds’ transport lemma 1.1 as we are not considering volume
integrals (when d = 2). Instead, more work is needed to establish it.

IN
&

EOE
|

ir
3

xT

e
6

ol

Figure 5.10 (reproduced) — The
vorticity near an obstacle. Vor-
tices are detached from the bottom
boundary layer as a wave of suffi-
cient height passes above (more de-
tails in the original caption).

LA primer in differential geometry is
available in appendix A. We simply
recall that 1-forms can be identified
with vector field, u =~ ub, where the
b and f operators allow to move from
the world of differential forms (covari-
ant vectors) and (contravariant) vec-
tor fields.

El 2d, u' denotes the 3 counter-
clockwise rotation

v [—uﬂ ' N

2This fundamental result of fluid
mechanics is a generalisation of
Helmbholtz (1858)’s work (later trans-
lated in english, Helmholtz 1867). He
used it to justify his bold theory: “vor-
tex atoms” (Kelvin 1867). In our case,
Helmholtz would be enough to prove
that the flow remains irrotational.
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a8(0)

ds(t)

28 (1)

Figure 1.13 — Notations for thm.

1.6.

Hientity. For all practical pur-
poses, we recall that

2
V(%) =Vu-u=u-Vu'

:u~Vu+u><(V><1ﬂ
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Let e(t, +) : [0, L] = Q,,(t) a parametrisation of 8(¢). By hypoth-
esis a is at least piecewise C' in its second argument. Without loss
of generality we can assume that it is C! (by concatenation). As the
points of §(t) move at velocity u, we have

oa(t,s) = u<t7 aft, s))

In these conditions, we can directly compute the time-derivative of

TS,

d d
al" [S(t)] % isu) u - ds(t)
4 rF
=< A u<t,a(t,s)) <Oty s)ds

L
—/0 6tu(t,a(t7s)> -0,a(t, s)ds

L
o
0

L

{un(t,a(ts)) -8ta(t,s)} -d,a(t,s)ds (%)
+ /O u(t,alt,s)) - O,alt,s) ds ()

Concerning the term (x), we have

€3 :/OL [Vmu(t,a(t,s)) ~u(t,a(t,s))} -0,a(t,s)ds

Finally, the last term (1) is

(1) Z/OLU(La(t,s)) -8Su(t,a(t7s)) ds

L
:/O u(t,alt,s))  Vu(t,alt,s) - ,a(ts) ds

:?{ u - Vu-ds(t).
a8(t)

In the end, using Euler’s equation (1.6), we get

L[] = jés(t) (a- 1 Vp) - ds(t) = 0.

dt -
O
Remark 1.7. A quick inspection of the above proof shows that
Kelvin’s theorem 1.6 remains true for a barotropic fluid where the
density is a function of the pressure only.



Remark 1.8. In the case of a viscous fluid with viscosity v, we have
(Batchelor 1967, eq. 5.2.7)

dr
7+V¢ V xw=0.
de 08(t)

The term V X w is sometimes called the palinstrophy. Adaptations in
2d is straightforward.

An important consequence of assumption H11 is the existence of
a wvelocity potential ¢. Indeed, the domain Q. (¢) remains simply con-
nected up to the splash (fig. 1.14), which cannot happen in the Eu-
lerian formulation of the problem, owing to hypothesis H8. We can
hence use Poincaré’s lemma! to write

u=Vo. (1.33)

This decomposition simplifies considerably the Euler system (1.27).
Indeed, the momentum equation becomes a vanishing gradient,

2

Vol b

Vo
V|0p++——+-—+gz|=0.
2 P

w

This quickly leads to
Vol

v
8t¢+¢+5+gz—f(t>,

5 - (1.34)

for some function f depending on time only. Redefining the velocity
potential as

ot x) — olt,x) + / f(r)dr + F(O),
0

we are able to omit the function f.2 Should the flow be steady, we
would get Daniel Bernoulli’s equation?®,

2
u
— tg9z+ P2 0,

2 w
everywhere in the fluid domain. Evaluating (1.34) on an free-surface
point z =1+ n(t, &) yields

Vo’
A

+gn=0. (1.35a)

z=14n(t,z)

We shall refer to this equation as Bernoulli’s equation aferward. We
have used the dynamic condition (1.16) to eliminate the pressure. At
the same time, the incompressibility condition (1.2) trivially becomes
Laplace’s equation®

A¢ = 0. (1.35b)

Finally, the impenetrability condition (1.10) becomes a Neumann bound-

ary condition for ¢,
Op, ¢ =1y, Vo =0, (1.35¢)

onT',. The system (1.35,1.20) shall be recast onto a set of two equation
on the interface I'; (¢) only defining the Dirichlet-to-Neumann operator.
This will be the subject of the next section.

Splash

Figure 1.14 — The splash singular-
ity corresponds to the moment the
free surface intersects itself in the
post-breaking phase. If hypothesis
HY7 is lifted, the splash cannot hap-
pen, as is shown in Fefferman et al.
(2016) and Coutand and Shkoller
(2019)

Istated and quickly showed in a short
note (Poincaré 1886), taken up again
shortly after in Poincaré (1887). It
states that on a simply connected open
subset of R™, every closed 1-form is
exact.

2This has no effect on the physics
since the relevant information is en-
compassed in the gradient of ¢.

3Bernoulli (1738)

4Laplace (1798 (an VII))
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I1'We have

€

—e i@h
ho

Furthermore, working in  the
dimension-dependant  curl opera-
tor yields the usual definitions of the
vorticity,

g

2
ot _v[ “h“z} (d=1),
Ug

z

ol
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IV.2. Non-dimensionalisation®

We quickly obtain the scaling of & presented in table 1.2 by in-
serting the non-dimensional forms of both V and w into the definition
(1.31) of the vorticity. We quickly get?

s=a([5]) 030

This motivates the introduction of a non-dimensional velocity potential
#* (and H11 allows it) such that

u?
Vo= [uQui} '

Its scaling given in table 1.2 is, once again, chosen in light of the O(¢)
linear wave solution,

zrhg<<A

aw cosh(kz) Sin(kx—w(k)t) X €A/ ghy.

62 2) = 3 )

Inserting this into Bernoulli’s equation (1.35), along with (1.27g) and
(1.27¢) yields

S (19 4 L (0.60)) 4 —
0u ' + 5 (\V & + 2 (0.6°)" ) +nF =0 onT,(t), (1.37a)
Afgh =0 in Q,(t), (1.37b)
epuVibt - Vigh = 9.0 on T, (1.37¢)

The physical relevance of irrotationality H11 is the subject of an
entire part of this work, chapter 5. Indeed, in the viscous setting, the
appearance of boundary layers near obstacles lying on the bottom can
lead to vortices being shed and avected in the fluid domain. We will
also discuss this hypothesis in light of the wave generation mechanism.

Remark 1.9. (Dimensional quantities or not?) For the rest of
this work, we shall only work using dimensionless quantities. Hence
we drop out the fj superscript for now on. Furthermore, we will set
e = p =1 (recall that the choice of A\, a and h, is arbitrary) except
when it is relevant to assume otherwise. Sections in which the values
of ¢ and p are of interest shall enjoy a highlight in their title, as the
present one or sec. III.

V. The Water Waves equations

A surprising feature of the Bernoulli system (1.35) is that it can be
written in terms of quantities depending on # only, hence diminishing
the equations instrinsic dimension by one. Indeed, as originally noted
by Zakharov (1968), should be define the trace of the potential on
Fi (t)7

Wit @) = o(t72 = n(t, 7)), (1.38)
we are able to recast (1.35) in terms of 1 and ¢ only. Furthermore, the

resulting system of equations enjoys a particularly interesting feature:
it is Hamiltonian.?Later, Craig and Sulem (1993) were able to rewrite



this very system in terms of n and v only by means of the well-studied
Dirichlet-to-Neumann operator. The resulting set of equations is called
the Water Waves system, sometimes also referred to as the Zakharov—-
Craig and Sulem formulation.

V.1. Motivating the equations

Using the definition (1.38) of the free-surface potential ¥, a quick
application of the chainrule yields

3tw = at¢ + 8t77 : azéf’
V= Vo + V- 9,6,

(1.39)
(1.39Db)

with ¢ evaluated on the interface z = n(t,2). Intuitively, it seems
difficult to express 0,¢ as a function of ¢ and n only. It is however
possible using the gentle properties of Laplace’s equation. To this end,
we introduce the Dirichlet-to-Neumann operator DtN[n, bjy as

DN, blvr = (/1 + |[Vn(t,3)] 0,0(1,7, 2 = n(t. 7).

This operator is linear! in ¢ but highly nonlinear in both 7 and b.
Indeed both functions appear through the shape of the domain ()
in which ¢ is computed. We can also write

(1.40)

DN, 0 = 0,6  —Ve| -Vn=0dn, (1.41)
z=n z=n
using (1.20) and the definition of the normal vector n,
n= (1.42)

1 \V/ { ﬁ 77}
= 1 |
1+ [Vnl?
This quickly leads to?

_ DtN[p, by + Voo - Vi
z=n 1+ V|2 '

Inserting this into (1.39a) yields the equation for the time evolution of
1, (all appearances of ¢ being implicitly expressed on z = n)

O = 0,0+ 0 - 0,9
1o 2 2
——gn—5[|Vo| +(0.0)"] + DN, BY - 0.6 by (1.352), (1.41)

= _ 2
1 [DtN[p, B¢ + V- V1
2 1+ V2 '

= —gn— %\WJ\Q +

Indeed, we have

—

= [Vy|* — 29y ¥y

2j.e. there exists a functional Hn, ]

such that

0H
o= @
S — oH
td)**%,

with 5% and % denoting the varia-
tional derivatives.
ton’s equations.
below.

These are Hamil-
We shall prove this

Iby linearity of Laplace’s equation

2Details of the computations,
0.¢|__ =DtN[n, bl¢
z=n
+ @(ﬁ’ - @17
z=n

=DtN[n, bJy) + Vi) - Vi
-2
— |V 0.0

z=n
using (1.41) and (1.39b).

Vol + (0.0)° = [V — 29w Vno.e + (1+ V) (0.0)°

DNy, bl + V- ¥ | [DINm, by + Ve o)’

14 |Vnf?

1+ |Vn2
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so that

lin Craig and Sulem (1993).

2Alazard, Burq, et al. (2013).

3The same property holds if we see
DtN[b,n] as a map between non-

homogeneous Sobolev spaces Hz (R%)

and H~% (R?). See Alazard (2024) for
instance.

4Definitions of the various function
spaces considered in this work can be
found in appendix A.

5Lax and Milgram (1955)
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+ (8Z¢)2} + DtN[p, bl¢p - 0,6 = — %‘W}’z - %

[DEN[n, by + Voo V]
1+ |Vnf?
DtN[n, by + Vb - Vi
1+ |Vn|?
DtN[n, bJy) + Vb - Vi
. 1+ |Vnf?
1 [DtN[n, bJep + Vo - V] ’
2 1+ |Vnf?

+€1/1'€7]

+ DtN[n, b]y

1> 2
=— 3Vl +
as wanted.

The resulting system of equations is exactly the Water Waves prob-
lem,

9,n = DtN[n, b] (1.43a)

o - 12
1 [DON[n, b + V- Vi
2 L+ [Vrf2

2

O = —gn — %\vw| + (1.43b)
As already mentionned, the unknowns 1 and v are functions of ¢t and #
only, i.e. the use of the Dirichlet-to-Neumann operator has effectively
reduced the dimension of the problem by one. These equations (1.43)
have been extensively studied since their first appearance thirty-two
years ago'. In particular, should their solution be regular enough, it
has been rigorously established? that we can use (1,7) to define a
couple (u,p) solutions of Euler’s system (1.27).

V.2. On the Dirichlet—to—Neumann operator

We have been able to reduce the space dimension of the Euler—
Bernoulli system (1.35) by introducing the operator DtN[n,b]y. In
this section we prove that DtN[n, b] is a well-defined operator from
H? (R?) /R to H—3 (R%)34 and state some of its important properties.
While we are at it, we introduce material that will be usefull in subse-
quent chapters. We momentarily forget about the time dependency of
all quantities. This section is adapted from Alazard (2021, 2024) and
Lannes (2005, 2013b).

V.2.1. Harmonic extension. We assume that the upper interface
and the bottom topography are Lipschitz functions, i.e. 7,b € W1 (R%)
(we could consider less regular topographies). We are interested in
solving the Laplace problem with Dirichlet data ¢ € H2 (R%)/R,

Ap = 0 inQ,
{ ¢ = v only (1.44)
0,9 = 0 only.

A direct application of Lax and Milgram’s theorem® does not yield the
result as ¢ is not in regular enough. However, the almost-flat nature
of the domain allows us to still find such .

Let § = R? x (0,1) the flat strip. Introduce the diffeomorphism
3, allowing to go back and forth between § and the fluid domain (fig.



I S — Q,
(#,2) (f,b(f)+(1+n(f)—b(f))z):(X,Z).

The fact that it is a diffeomorphism, ¢.e. that it has an inverse trans-
formation, is a consequence of H5 which can be rephrased (and slightly
made stronger) as

ﬁiergd<1 ot 7) — b(t,f)) >5>0, (H5, bis)
at all time ¢, for some constant § > 0. X can be continuously extended
(since ,b € W1>°(R%)) to encompass the bottom I', and the interface
T, by £(-,0): R? — T, and 3(-,1) : R¢ — T,.

Let x € D(R) a smooth even function such that x(xz) = 1 for
|z| < 4 and x(z) = 0 for |z| > 1 (fig. 1.16). Introduce the extension

w;ofz/)iné’as

s S

NS _ 1 _ Z £)eieX
Ax - — /Rdx((l 2)|E]) 79 @)eE X dé.

We check readily that w;(, 1) = 4 and that Vw:rg € L?(8) since

[vvs

<l

‘LQ(S)\ ‘ 0% (Rd)

This last regularity property is essential.! We now push w; to the
physical domain €2, through ¥, defining
Yh=¢fox.

Since n,b € W (R?) we can show that Vi € L*(Q,) and '] _, =
. Introduce the space Hf () of functions f € H'(Q,,) vanishing
on the interface but not necessarily on the bottom. More precisely,

def 71{1(9)
HE (Q,) < D(Q, UT,)

e — N (0)
= D(Q, UT,) ,

where the second equality stems from prop. 2.3(iii) in Lannes (2013b).
It is a Hilbert space for the scalar product of H!(Q),

<f’g>}}1(g) = <Vf’ Vg>L2(Q>'
2

Applying the Lax-Milgram theorem, or even Riesz’ theorem® we
can find a function u € H} (£,,) such that

/Vu~Vv:—/VwT~V1},
Q Q

for all v € Hlli(ﬂw).:gThen ¢ = u+t is a weak solution of (1.44) with
Dirichlet data ¢ € H2(R%)/R, as wanted.

Figure 1.15 — The diffeomorphism
between (2, and §.

x(x) y

Figure 1.16 — The function y. Its
graph for z < 0 can be imagined
easily through its even nature.

11t is obtained from Plancherel’s for-
mula and lemma 2.20 of Lannes
(2013Db).

2Riesz (1909)
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3This function w is the weak solution of
the following problem,

Au = Ayt inQ,
u = 0 on I';
d,u = -0, onTy.
z ¢iv U

x
7
1
W 8
0
X

Figure 1.17 — Where are the
quantities used in secs. V.2.1 and
V.2.2 defined?

I'We state the result for the H%(Rd)
to prevent a tedious discussion on
the dual of the Beppo-Levi space

2 (RY)/R.
2i.e. the identity

/V¢Aw—w-w - /W 60,

obtained easily from Green (1828)’s
theorem.
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V.2.2. Trace. Application of the classical Sobolev trace theory in €,
to V¢ would not yield an optimal result. Indeed, introducing the
auxiliary function

for values of z sufficiently close to 1 (fig. 1.17) the trace of ¢ on T'; is
just the value of ¢; when z = 1. Asn € Wh°(R?), ¢, enjoys the same
regularity as ¢. The Dirichlet—to-Neumann map is then given by

=U

z=1 z=1

DNy, by = [(1+ (] ) 0.6, — ¥ 96

Straightforward computations shows that

UeL22 = L2<(1 —, 1);L2<Rd>)

0.U ==V (Vo,— (0.6,)Vn) € L2H;' = 12((1 -5, 1), H (R7) ),

for § defined in (H5, bis). We conclude using theorem 3.1 of Lions
and Magenes (1968)

DtN[n, bleb € c((l —6,1); H*%(Rd))

and extension by continuity quickly yields that DtN[n, b] indeed maps
H3(RY/R to H 3 (RY). O
V.2.3. Standard properties. Assuming now that n and b are smooth
for simplicity, for ¥,,v, € H %(Rd)l given, we denote by ¢, and
¢ their harmonic extensions constructed in sec. V.2.1 (it exists as
Hz(R?) is continuously embedded in Hz(R%)/R). A rapid applica-
tion of Green’s first identity? yields

4 4y DEN[, by = / Vo, Vo,
d Q.

From this identity we quickly get the following lemma.
Lemma 1.10 (Lannes 2013b, prop. 3.9). The DtN|n,b] operator
enjoys the following properties,

1. Symmetry. It is symmetric with respect to the H > — H2
pairing,

(DEN[. O]y, 3) gy = (DN, DJuby, by -

1 1-
2xH?2
2. Positivity. It is positive for the same pairing,

(DN, Oy Wy) 1 2 0.

%xH%
The same holds for the (ﬁ%(Rd)/Ry — H2(RY)/R pairing and even
for the L?*(R?) scalar product, should DtN[n,bly, be an element of
L2(RY). m

V.2.4. Symbolic representation. Should we choose b =1 = 0, then
we have an explicit formula for the symbol of DtN][0, 0],

DtN[0,0] = Op(ag) with ay(#,&) = |¢] tanh(|¢])



This can be seen appyling the DtNJ[0, 0] operator to the Fourier mode

e’®. The symbol a, belongs to the class S*(R?). Craig, Schanz, et al.
(1997) proved that DtN[n, 0], while highly nonlinear in 7, is analytical
in this very variable!. Its first order and second order (in 1) symbols
a; and a, are

—

al('vg) :f'ng—aonao»
- 1,512 1 2
ay(+,§) = *5‘5‘ n*ag + agnagnag — 5“0772’5‘ .

This decomposition has been used numerically in the pioneering work
of Craig and Sulem (1993).

V.3. Hamiltonian structure
As already pointed out, Zakharov (1968) noticed that the Water

Waves system (1.43) possesses a natural Hamiltonian structure. In-
deed, should we define the following functional

/w (Z)DtN[n|sh(z) d + = /gn2(5ﬁ) di
= K[n, ¢] + V[n],

(1.46)

called the energy or Hamiltonian, then we will show that the system
(1.43) can be put in the form

om= 0,H, (1.47a)
oy = —6,H. (1.47b)

We will now provide a proof of this important fact. The computations
that will follow are purely formal (i.e. in the H°*(R¢) sense). A more
rigorous treatment can be found in Lannes (2013b, sec. 3.3)

V.3.1. Variation of V in 7. The variation of the potential term in
(1.46) is computed readily,

Vin+h] =
n(@)? + 20(2)h(@) + h(@)?) dz

— V] + / gn(a) - (@) di + O(Ihf?).

V.3.2. Variation of K in 1. Using the symmetry of the DtN[n, b]
operator (lemma 1.10(1)), we can quickly get ¢, K,

Klp.v+h) = / (6@ + (@) )DeNta (@) + (@) ) da
= [ (5Nl + hDNG) + O(jbI?)

— K]+ [ KNl + O(Jnl?).

R

Lor 1 small.

H\Iotation. 0,H is the Fréchet par-
tial derivative of H with respect to

the function 1. J

T

Figure 1.18 — Variation of K[n, ]
with respect to 7. Visual defini-
tions.

o1



IThis method shall be used to investi-
gate the Hamiltonian structure of the
Breaking Waves equations in sec. 11.3
of chapter 2.

V.3.3. Variation of K in 7. This is where things get more involved.
Let n, = n+ h, where h is a small variation. Let ¢ and ¢, the
corresponding solutions of the Dirichlet problems associated with the
Dirichlet-Neumann operator,

A¢, = 0 inQ,
DtN[n] : { ¢, = ¥ onz=n,()
Dubn = 0 onz=Db(3)

Ap = 0 inQ
DtNm:{ 6 = v onz=n()
0,6 = 0 onz=>b(2)

Of course Q (respectively €2;,) denotes the water column encompassed
between the graph of b and 7 (resp. b and 7),,). Green’s identity quickly
leads to

K[n+ h, ] = ¢G[n+h]1/f

[Rd /bn+h V%
</h<0} /h>0}>/ ‘V¢h|2

=1_[n+h,Y|+ 1 [n+h,

This decomposition of the integral is possible since both n and ),
are continuous. This is equivalent to decomposing h = h, + h_ with
h, = max{h,0} and h_ = min{h,0}. The derivative being a linear
operator, we can compute K[n + h, ] and K[y + h_, 1] separately’,
and we must get the same expression at the end. Let us treat each
term independently.

The first term I_ corresponds to # € R? such that n(z) > n,(7),
i.e. h(Z) < 0 (figure 1.18). In that case, ¢ is defined in 2, and we can
write

so that

Mh 2
I+ hy) = / N V6|
L T)<

/ <O}/b Vo /ﬂ<0}/bn!V¢\2—/ ﬁ@/j!w\z
/ <O}/b ‘V(bh’ _/ <0}/b ’Vd)’ / 0}/ |V¢’

To handle the last integral, we use the fact that

/nn+h ‘V¢|2 _ /nm-h, [|V¢‘2<f’n(5>)
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“(2.2) b)) dz



— Vo (#.0@)) - h(@) +O(h?),

for some Z € (n+ h,n) (this is the Taylor-Cauchy formula). Regarding the first and second integrals, we can

now use

N 2 2
[ [T1wel ~|vd
{h<0} Yb
- /{h<0} (¢han¢h’21nh a ¢8n¢"z:nh>
- /{M} (¢h5n¢hL:,,h - [m\nh +0,¢ 7,} 9y, [%L,h + 0,0
- /{h<0} (8z¢ 17) B

= _2/ 0,0| 0,04 -h:—2/ h-0.60,0|
{h<0} n h {h<0} n

{h<0}

J)

9,0.0

8ncbh + ¢h
n h

|7I |77h

.h7
n

where we have used multiple times the identities (1.49) and the symmetry property of the Dirichlet-to-

Neumann operator. Combining everything we get

L+ bl — L[, 9] = /{m} v [((0.0)"+ (%0)")|_ —2(DeNTrbie-0.0)

o

:/ ne(1+ <?n)2>(8z¢)2+Wd)‘z—Q[DtN[n,b]er?m?w]aZ(b}
{h<0} B

zZ=n

N o 2
B} DtN[p, by + Vi - V
< [ o - P T T)
{h<0} 1+ (Vn)

We won’t treat in details the case h(Z) > 0 since it leads to similar
computations and an identical result, namelly

(DEN[n, by + V- V)
1+ (V)

Lbrtho-Lin = [ hl[vof @) -

{h>0}

One just needs to remember that this time, ¢, is defined in Q but
¢ is not defined in all Q, (fig. 1.18). We thus get the variationnal
derivative of K with respect to 7,

5, K(h) :%/h.

This finally establishes (1.47).

\Z

V.4. Water Waves on a manifold

Before moving on to a discussion on asymptotic regimes, we would
like to present a reformulation of (1.43) on a d-dimensional (hyper)surface
embedded in R4*!. In this manner, we shall express the Water Waves
equations on a spherical shell (as in the earth system) or on the d—
torus. In this way, we will also introduce most of the tools that shall
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o >0

Ty for ®(xz) =z

Figure 1.19 — (up) Schematic rep-
resentation in 2d of the unper-
turbed surface I'y for a general
gravitational potential ®. (mid-
dle) Case of the flat ocean. (down)
Spherical ocean.

Figure 1.20 — An admissible path
between I'y and I'j in 2d.
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be used to motivate the Breaking Waves equations in the following
chapter.

Let ® : R! — R a smooth function, representing a gravita-
tional potential. We suppose that 0 is regular value of ® so that
r,=ao1! ({0}) can be equipped with a d-dimensional oriented rie-
mannian manifold structure (fig. 1.19). It represents the stationary
(unperturbed) free surface.

If the ocean has no bottom, then the unperturbed fluid domain can
be taken as

Q= {z e R : ®(x) < 0}.

This is e.g. the case of an infinitely deep flat ocean. Should a to-
pography exist, the fluid domain can be defined as follows: let I', a
surface in R? without boundary. In the absence of perturbation of
Ty, hypothesis (H5, bis) amounts to assume that each point of I' is a
distance al least 0 > 0 of I'y:

inf dist(a:, FO) =46>0.

xel'y
Using the link between 'y and ® € C°°(R?*1), this also means that
sup ®(x) = —C(9) <0,

xcl'y

for some non-decreasing function C of 4. To rigorously define 2, we
shall need the following definition,

Definition 1.11. An admissible path connecting I'y to I'y is a
parametrised continuous curve o : [0,1] — R whose endpoints lie
on I'y and Iy respectively and whose interior points never cross either
Ty or Ty(fig. 1.20). More precisely, we have a(0) € T, a(1) € T
and

a(s) ¢ T, uly,, for all s € (0,1)

Then () is the set of points lying on an admissible path connecting
I, and Ty (and which are not endpoints),

Qp = {a: € R : Ja admissible path s.t. a(s) =z for s € (0, 1)}

It is easy to see that {2, defined in such manner is an open subset of
R*! with boundaries T'y and T,

Having defined I'y as the zero level-set of @, it follows that a solu-
tion of the Euler-Bernoulli system (1.35) is ¢ = 0. Indeed Bernoulli’s
equation (1.34) in € is simply

1 2
at¢+§\v¢\ +®+p=0.

Evaluated on the unperturbed free surface I'), both ® and p vanish,
yielding the system

Ap = 0 inQ
1 2
0,9 + §‘V¢| = 0 onl
0,0 = 0 only
¢p(t=0) = 0,

whose solution is ¢ = 0, i.e. there is no motion due to the gravitational
interaction on the interface.



V.4.1. Water Waves as a perturbation of I';. How to introduce a
surface perturbation 7 as in (1.43)7 The idea is to use the unit vector
T, normal to I'y. To define it in a rigorous manner, we use the C*
inclusion ¢ : Ty < R4 Let § € Ty}, the associated unit normal
vector 7y (5) is defined by

—o L‘| ().

It is well defined since ® is a submersion (its gradient does not vanish in
the vicinity of T'y). Let , : I’y — R a function depending continuously
on the time t. We define a new, time-dependent surface I';(t) as the
image of the following map

Rd+1
1(8) + 1, (5) 1 (5).

fln] - ILO —

S —

In the flat case, i.e. in the usual formulation of the Water Waves
equations, I';(t), defined in this manner, is always a regular surface.
Using it, we define the fluid volume Q(¢) as long as T;(t) N T, = 0.
Whenever I'y is a curved surface, a curvature-based criterion on 7,
must be specified in order to prevent self-intersections. Put differently,
we must enforce a criterion to make f[n,] not only an immersion, but
an embbeding.

The easiest such criterion is based on the extremas of I'y’s curva-
ture. Indeed, for a certain s € Iy, let k, ..., K, the principal curvatures
of the base water surface I'y2. Introduce I';, the parallel surface at a
fixed (signed) distance h to I'; (fig. 1.22), that is, the image of f[h].
For h > 0, T';, lies in the “air” (i.e. where ® > 0) while for h < 0, T';,
lies in the “water” domain, where ¢ < 0.

We can relate the principal curvatures x4 j,, ..., g p, O T') t0 Ky, Ky

in the following manner,

K‘I.
U fori=1,--.d.
Kin 15 e, or ¢ AT

This is shown in e.g. Brechner (1992), cor. 5.4.2. The latter relation
stipulates that I'), possesses a cusp in the i-th principal direction at s
as soon as

1

h>+—,

Ky
depending on whether Iy is locally concave (x; > 0) or convex (k; < 0)
in the i-th direction at § (fig. 1.23). Therefore, should we choose
h,,h_ € R such that

. -1
h_> [inf min Iil(g):| and h, < lsup ‘max mz(§)1 ,

sely i=1,--,d el i=1,,d

with straightforward adaptations to globally convex or concave sur-
faces, then we can choose h_ < 1, < h_ and be sure that the mapping
fIn.] is an embedding. However, this condition is far from optimal as
a small curvy region prevents large perturbations to arise in almost
planar zones far away.

Figure 1.21 — Water Waves on the
2-torus. Parts of the interface I';
and of 2 have been truncated in
order to highlight the bottom to-
pography I';.

IMotivated by the work we have done
so far on the flat ocean case, we denote
using an overhead arrow ~ the points
of I'y. As I'y is defined as a subset of
R we could also write § € R4,
Hence the point of this notation is to

emphasise that s belongs to I'j as well
as R4+,

Figure 1.22 — The parallel curves
to a parabola I'; of maximum cur-
vature 1.

2Technically, the iy, ..., ky are defined
as eigenvalues of I'y’s second funda-
mental form.

Figure 1.23 — The principal cur-
vatures at § € I';. The orange
vectors are the principal directions.
The blue curves are the associated
geodesics, whose respective curva-
ture at S are exactly the principal
curvatures.
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diSt(-./ Fl))

Figure 1.24 — Distance function
to the unit square (in white), with
isolines in black. The cut locus is
shown in orange.

: .
Cu (I'y)

2

Figure 1.25 — A perturbation
T';(t) of the steady surface I'y. Its
outer and inner cut loci, Cu' (T;)
and Cu' (T,), are shown in orange.

LA parametrisation of Ly is
r3(u) = ¢(3) + g (3)u,

for u € R.

Figure 1.26 — Proof of lemma
1.12.
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V.4.2. The cut locus criterion. A better geometrical argument
leads to a more optimal requirement on 7, to yield a regular surface
[, (t). The distance dist(z, A) of a point & € R4*! to a subset A € R4*!
is defined as
dist(x, A) = inf ‘w — y‘
ycA

We define the cut locus Cu(I'y) of Iy in two different ways. The first
definition, analytical, relies on the singular support (defined in A.12)
as

Cu(ly) = [sing supp dist(-,I‘O)] —T,.

This definition, while practical, does not give much insight on the
shape of Cu(T'y). Therefore we also provide a geometric definition.
To this end, we introduce an auxiliary set, the separating set Se(T')
associated with I'y. It consists in points x € R+ — I'y lying on at
least two distance-minimising line segments from x to I'y (fig. 1.24).
Owing to thm. 3.30 of Basu and Prasad (2023), there holds that

Cu(Ty) = Se(T'y).

Examples of cut loci of various planar curves and surfaces are rep-
resented in figure 1.24, 1.25 or 1.27. The proof that both definitions
are equivalent can be found in Basu and Prasad (2023, lemma 3.7).

From the set Cu(I'y) can be extracted a geometric sufficient condi-
tion on 7, to yield a regular perturbation surface T';(¢). Indeed, let

Cu ([y) =Cu(Ty)NQ, and Cu™(Ty) = Cu(T,) —Cu (Ty)

(see fig. 1.25). Intuitively, the idea is to choose 7, in order to prevent
I;(t) to cross Cu™(T). This can be formalised as follows.

We denote by L; C R%"! the line that passes through ¢() in the
normal direction ny(3)! (fig. 1.26). Introduce the functions

d*(3) = dist (L(§>, LN cui(ro)).

Then we have
Lemma 1.12. Letn, : I'y = R a C* function such that

d- <mn,<db

then the map f[n,] is an embedding and the associated surface T,(t) is
a regular submanifold of RI+1. O

Proof. The idea is to show that if f[n,] fails to be one-to-one, then
T, (t) crosses Cu(T',) somewhere.
Thus, assume that 5;,5, € I'; are such that

Fnl(51) = £l (32) while 81 # 5.

Without loss of generality, we will assume that f[n,](5;) (see fig. 1.26)
lies outside of Q, i.e. 0 < n,(8;) and 0 < n,(8,). The opposite case is
treated in a similar manner (with minus signs added when needed). By
eventually swapping §; and §,, we can write 7,(8;) < d*(s;). Then,
by definition of Cu(Ty),

dist ( £ln)(51). Ty ) = mi(51).



Indeed, the shortest path joining f[n,](s;) and T is the straight one
passing through ¢+(s;) in a perpendicular direction. Thus, the straight
perpendicular path joining ¢(35) and f[n,](85) = f[n,](8;) is not the
shortest. Therefore n,(35) > d*(s;).

Finally, as f[n,] is a diffeomorphism between a manifold and its
image, its image inherits the manifold structure of Ty and f[n,] is an
embedding, as wanted. |

An admissible surface elevation 7, satisfies the hypotheses of lemma
1.12 and is such that T;(¢) N T, = 0.

V.4.3. The Water Waves equations in local frame. Given an
admissible surface elevation 7,, we define the perturbed water domain
Q(t) using the method that has been used to define ), using admis-
sible paths between I'y and T',(¢).

The surface advection equation on 7, is now stated. Introduce the
gradient of 7, using its differential as such,

Vi, = (dn,)’ € TT,.

At each § € Ty, it can be identified with a vector in T,y R*! o~ R4H1

using the differential of the canonical injection, ¢, (@nt). The analogue
of (1.20) on a curved surface T is then

On, = g — L*(ﬁnﬁ] : <V¢t ° f[mD = DtN[n, ]+,

for ¢, now defined as ¢, = ¢, o f[n,]. This is an equation on I';. As in
the flat case, n, — L*(ﬁnt) is a vector field everywhere perpendicular
to T, (¢)!.

In order to derive the equation for v,, we shall work in a coordinate
chart. Indeed, the structure of 1, makes it difficult to handle globally.
Let 5 € T, and choose an open set U; C R**! containing ¢(5) along
with a diffeomorphism ¥ : U; — R4+ (fig. 1.27). We denote the i-th
components of ¥ as z°. We assume that in this coordinate system I
is represented by

rel, <« z¥(#F) =0,
and that 2%*! corresponds to the unit normal coordinate,

aj#l?:ﬁ(?)’ for each 7 € U; N T,

with extension in the normal direction. Therefore, we can also assume
that U, extends up to Cu(T'y) but it exhibits a coordinate singularity
on any further extension. Since I is embedded in R4*1, the couple
(Vi B) = (U N Ty, ¥[p,) is a chart on I'y centered at s. We can then
write 1 = 2o UL,

In the local coordinate frame 27, the points of I';(¢) are represented
in a way that does not fail to remind us something, namelly

zt(5)
(o fln)(3) = 5| (1.50)
1:(8)
The link between the potential ¢ and its trace 1 is computed readily,

02 = ¢, 0 fln,] 0 =71 by definition,

Ny

]RS

Figure 1.27 — The cut locus of a
surface. The chart U, around s and
the associated diffeomorphism.

ndeed, through a quick computation
we notice that

’;1’0 - L*<€nt) = f[nt}*ﬁ()

o7



IThe computations are identical, ex-
cept for the metric tensor g that is yet
to be discussed.

2N and S being respectively the north
pole and the south pole of S2

3Recall that % is not normalised.
Should we use a normalised basis vec-
tor (sometimes denoted @ or €,) in-
stead, we would have the usual de-
composition of the gradient vector on
a unit spherical shell,
of ~ 1 Of .

VI= %BJF sin(0) &p‘p
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=¢, o0 toWo fln,] o =71 ¥ being a diffeomorphism,
= [¢t ° \Il’l] (77, (nt ° E’1>(Tﬂ)) using (1.50),
with 7 a vector in Z(T'y) C R?. This shows that we can just work with
the quantities 1, o =71, ¢, o =1 and 7, o =71 as was done in the flat

ocean case (sec. V.1). Following the same procedure!, the resulting
equations (on I'y) are exactly (1.43),

Opny = DtN[th

S5 2
1= 2 1 [DtN[n]% +&r, (V%Vm)]
3twt=<1>°f[m]—§\v¢tlro+§ 1+‘§7h|% :
0

The geometrical information is implicitly encoded in the metric g, .
It thus remains to elucidate its nature. If (-, <) denotes the euclidean
scalar product of R¥*! then the induced metric on I'y corresponds to
its pullback by the inclusion ¢,

gl"o(" ') = [’*<°’ '>'

and lﬁwt‘i is the associated norm.
0

V.4.4. Water Waves on the 2-sphere S?. A quick application of
the rather abstract computations made above yields the water waves
equations on the sphere. More precisely, we now write down the above
system in the usual coordinate chart of the sphere given by the coor-
dinate functions 6, ¢ : S2 — {N, S} — (0,7) x (0,2m)2. Their action is
defined through

sin () cos(y)
(0,)"" = | sin(6) sin(e)
cos(6)
In this case we have Cu(S?) = {0} so a surface perturbation 7, is

admissible if 7, > —1 everywhere on S?. The euclidean metric g,
g =dz!' ®dz! + dz? ® dz? + d2® ® dz3,
gives rise to an intrinsic metric gg: on S? through the inclusion map
¢+ S? < R3, namelly
g = 1'g = dI ® df + sin’(0)dy ® de.

This metric contains the intrinsic geometric information of the sphere.
Expressing the differential of a C'* function f using 6, ¢ yields

_0f 494 9
Af = 540+ 5 v

Its gradient v f corresponds to the unique tangent vector such that?

= . = af o 1 0of 0
df =g (Vf,*) i.e. Vf:%%_A'_Sinz(Q)%%.

The coefficients appearing in the water waves equations on curved
surfaces can be computed in the chart associated to 6 and ¢,

SAERY = oY, On 1 Oy, 0n
Bor (Ve V) = v (V) = Gt G+ a5 5



2 2
L2 S o o 1 oY
VT = g (Ve Ve ) — 725) (J)
‘ ¢t‘s2 gS2< ,lzbt? ,l/)t) ( 69 + sin2(0) agp

Remark 1.13. The Water Waves equations on S? could be usefull
to describe ocean planets. However, to give an accurate description of
such system, they should be rewritten in a rotating frame. |

V.4.5. Discussion. Deriving the water waves equations on any smooth surface did not yield a surprising
result: it is nothing but (1.43) with a different, non-flat, metric. Yet, it provided geometrical intuition that
shall be used to describe breaking waves in the next chapter. Before doing so, we would like to make a few
observations that, we believe, may be important to have in mind before moving on.

First, even though these equations describe the movement of T';(¢), they are written on the unperturbed
surface I'y. This presupposes a one-to-one correspondence between the two. While it seems unreasonable to
drop out the very idea of a connection between I'y and T';(¢), the one that has been chosen here (the normal
perturbation f[n,]) is too sharp and actually prevents this model from capturing the breaking phenomenon.

Moreover, at the very core of this method lies the implicit shape of the zero level-set of the gravitational
potential, ®~1({0}) = I',. Water waves can then be seen as time-dependant perturbations of this rest frame.
In particular, if a perturbation 7, actually happens to yield another level-set of ®,

fn](To) = 27 ({a}),

for some a € R*, then the constant a could be incorporated into the velocity potential ¢, yielding a steady
perturbation. These kinds of 7, do not correspond to water waves in the physical sense since it lacks a
time-dependent nature.

Finally, we observe that the geometrical analysis of admissible perturbations 7, eventually led us to find
out about a new kind of singularity at which the present depiction of water waves fails: the self-intersecting
singularity which, owing to lemma 1.12, only happens if f[n,] crosses the cut locus. This shortcoming is
intrinsic to the mathematical modelling. Indeed the universe does not break as soon as two water droplets
collide.
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Hypothesis

Physical description

Associated equation

H1
H2
H3
H4
H5

H6
H7
HS8
H9
H10
H11

Matter is continuous

Fluid is homogeneous

Non-mixing of two phases

Fluid is newtonian with homogeneous viscosity
No dry region, i.e. there is always water be-
tween the air region and the bottom

Fluid is inviscid (v, = 0)

Neglecting the air

The wave does not break

Neglecting surface tension

The bottom topography is single-valued

The flow is irrotational

All of them
Incompressibility (1.2)
T, () exists and is d—dimensional

(H5) or (H5, bis)

T, (t) is the graph of h(t, Z)

', is the graph of b(Z)

Euler’s system (1.6), (1.10) and (1.16)

Table 1.3 — Reminder of the hypotheses that were made when deriving the equations describing eulerian water

waves.

Remark 1.14. In this chapter, three sets of equations have been motivated from a physical perspective. For
the sake of clarity and accessibility of the following chapters, we wrap up the considerations of the present
one and recall these sets of equations (and the assumptions that were not made to motivate them).

1. The free—surface incompressible Euler system. (-H8, -H10, -H11)

2. The free—surface incompressible Navier—Stokes system. (—H6, -H8, —H10, -H11)

Should we assume, furthermore, that the interface is singe-valued (HS8), then both (1.

u+u-Vu=—-Vp+g

V-u=0
p=0
u"be:O

V-u=0
. 2 .
u"':l/b O

Py, x S(u) - Ay, =0

supplemented with the interface advection equation (1.20).

3. The Water Waves/Zakharov—Craig and Sulem system. (—H10)
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9ym = DtNI[n, bl¢)

1
Jdu+u-Vu=—Au—Vp+g
Re

[DEN[n, by + Vb - V) ’

Oy = —gn — %Wd}]z + %

54) are

(1.55a)

(1.55b)



The Lagrangian framework and the
Breaking Waves equations

“Happy we’ll be beyond the sea
And never again I’ll go sailing”

Bobby Darin, Beyond the sea (1959)

The celebrated Eulerian framework for water waves that has been introduced in the previous chapter
fails at describing a breaking wave (in a sense soon to be defined). This shortcoming is not due to the
eulerian advection equation (1.18) itself but rather from the assumed shape of the function

F(x,t) = z— h(t,2), (1.19, reminder)

chosen to implicitly describe the interface. Indeed, numerous numerical studies (see sec. II1.2 in the intro-
duction for citations) based on the Navier-Stokes equations (1.54) with an eulerian advection scheme have
been able to pass the breaking point, and even the splash singularity. The mathematical description of
breaking waves, however, most often rely on a parametrisation of the interface and an explicitly lagrangian
scheme to describe the motion of the fluid elements lying on the free surface.

In the present chapter, we propose a self-contained introduction to lagrangian fluid dynamics; we use it
to introduce the Breaking Waves equations, a (pseudo-)Lagrangian analogue of the Water Waves equations
describing overturning waves in two and three physical space dimensions, extending the unpublished work
of Craig (2017); we discuss their hamiltonian structure before finally discussing equivalent mathematical
definitions of wave breaking (and of the splash singularity). We hope to convince the reader that the
lagrangian framework is not only a useful tool, but more generally a good mindset in our case.

[.  Lagrangian Fluid Mechanics

— Hypotheses not made (see table 1.3): (—-H8, -H10, -H11)
We begin this chapter with a thorough presentation of the laws governing fluid dynamics in the lagrangian

framework, that is in a time-dependent coordinate system in which points with fixed coordinate follow the
fluid elements. Most standard textbooks choose to label the fluid elements using the fluid domain at a time
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to. We proceed differently to encompass changes of coordinates that shall be used later, in sec. II. The
present approach is based on the book by Bennett (2006), as well as the work of Salmon (1988, 2020).

[.1. The label space

Before writing the equations of fluid dynamics in a time-dependent coordinate system, we would like to
discuss precisely how to build such frame and introduce some useful notations. As in chapter 1, we consider
a fluid filling a physical time-dependent domain Q(t) C R4l (d = 1 or 2) with boundary 9§(t). For now,
we assume that this very fluid is inviscid but we shall treat the viscous case afterward.

The label space () is a fixed subset of R%*! such that, at all time ¢ > 0, there exists a C L_diffeomorphism
X, = X(t,+) : Q — Q(t) with inverse A, = A(¢, ) : Q(t) — 2 such that

ul(t, x) = [8;? o At] (@),

i.e. the “velocity” of the diffeomorphism X corresponds to the flow’s velocity u. A schematic representation
is visible in figure 2.1. In the following, we shall draw the distinction between physical points & € Q(t) and
label points a € ). Consequently, the physical velocity of the point a € € is exactly the fluid’s velocity,

8,X(t,a) = u(t,X(t,a)). (2.1)

A(t,x) / \
N

\_/

X(t,a)

acQ .
o0

2Q(t) - J

Figure 2.1 — The physical space and the label space, coupled through the time-dependent diffeomorphisms X, with
inverse A,.

This motivates the usage of the word label to describe the point a € Q. Indeed, a labels the fluid element
initially present at X (0, a) and whose position at time ¢ > 0 is X (¢, a).

Many choices of label spaces € can be made. Most commonly, £ = Q(¢ = 0) is chosen (fig. 2.2). This
amounts to freeze the elements’ position in time and describe the subsequent evolution of the system in this
slice of space-time. Making this choice introduces useful simplifications of the equations. In the present
work, we follow a different path however.

\/ =
/\

acQ=0(t=0) ~_ x € Q(t)

A(t,x)

Figure 2.2 — A peculiar choice of label space: freezing the time.

Before stating the equations of fluid dynamics in the label space (the a space), we quickly turn to the
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jacobian matrix associated with the transformation

J(t,a) = (VGX)T(t,a) = [gf’ (t,a)} , with inverse Jl(t,x) = (VmA>T(t,ac) = [gﬁz (t,ac)}

J i,j J i,j

This quantity shall be of fundamental importance in the following as it makes the link between differential
operators in the x space and the ones in the a space. Furthermore, the conservation of mass will be
rephrased as an evolution equation on this very quantity. Yakubovich and Zenkovich (2001) even proposed
to write down every ideal fluid dynamics equation using J as the sole variable.

Remark 2.1. In section II of chapter 3, we will rewrite the equations of fluid dynamics in any time-
dependent frame in order to motivate the Arbitrary Lagrangian-Eulerian (ALE) method, thus extending the
present framework.

1.2. Conservation of mass

In sec. 1.1 of chapter 1, we established Reynolds’ transport lemma using exactly the lagrangian frame
(without naming it). As this result leads readily to the continuity equation (1.1), it seems reasonable to
state that combining elements from the proof of lemma 1.1 with the physical axiom “mass is conserved”
would yield a lagrangian equation for mass conservation. Indeed, let V(¢) C Q(t) a material volume and
denote V = A(t7 V(t))7 then straightforward computations yield

0= % (/V(t) p(t, x) da:) = % (/ﬁp"(t,a) det(J(t,a)) da> = /ﬁ@t {p"(t,a) det(J(t,a))} da,

where for each eulerian quantity (¢, ), we denote its value in lagrangian space as 0(t, a) = O(t,X(t, a)).
Since the control volume V(t) is arbitrary, we conclude that

0, {ﬁ(t, a) det(J(t,a))} =0 for all @ € Q and t > 0. (2.2)

This is the lagrangian equivalent of the continuity equation (1.1). Should the fluid be incompressible with
a constant density p > 0, then we obtain the lagrangian incompressibility condition

0, (det(J)) = 0. (2.3)

This equation obviously stipulates that the volume of any material volume V(t) does not change in time.
Manipulations as the one made in the proof of lemma 1.1 show that it is in fact equivalent to the eulerian
incompressibility condition (1.2).

Remark 2.2. With the label space corresponding to the initial fluid domain O = Q(t = 0), as in fig. 2.2,
the situation is even easier since X (0, +) is the identity, so that det (J(t, )) =1 at all time ¢ > 0.

1.3. Conservation of momentum

Euler’s momentum equation (1.6) was also obtained through the use of Reynolds’ transport lemma 1.1.
Therefore, the same type of computations as above yield

% ( /v ) dw) — di ( / 5(t, )0, X (1, a) det (J(t, @) da)

p(t,a)0, X (t,a) det(J(t, a))] da

(t,a) det (t, a))@ttX(t a)da using (2.2)

ail
-
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- / [~ (Vop) (1, X (1,0))] det(J(t,a)) da,

14

with F' the volume forces, i.e. gravity and eventually viscosity in our case. The pressure term can be handled
using the chain rule (we recall that a summary of vector calculus identities is available in appendix B),

V.p=V_A [(Vafo) (1, A, -))}.

Since the material volume V is arbitrary, setting F= pg the gravity, we obtain easily the lagrangian form
of Euler’s momentum equation (1.6),

pOX =~V A(L X ()| - Vab + pg.

Notice that, in contrast with the eulerian form, the non-linearity appears now in the pressure term.
Furthermore, this relation holds for non-constant values of p. Finally, we observe that it has a form very
similar to Newton’s second law.

Remark 2.3. Recasting the above equation in the eulerian frame is done readily by noticing that the
left-hand side is exactly the material derivative,

O X(t,a) =0, {u(tX(t, a))] = <8tu) (tX(t, a)) +0,X(t,a)- (un) <t7X(t, a)).

Remark 2.4. We could also obtain the pressure term without relying on the eulerian formulation at all.
This is more involved, however. A standard reference carrying out such computations is Bennett (2006,
sec. 3.2)

The gravitational force usually takes the form of a potential in the eulerian frame, F = V _®. This
allows to obtain a more tractable form of Euler’s equation in the label space, namelly

V.X-0,X-V, [ci> _ ﬂ : (2.4)
where we used the fact that A;' = X, yielding a useful link between VA and V,X. We stress that,
for now, the computations that have been carried out do not depend on the chosen coordinate systems,
either the eulerian one or the lagrangian one. We won’t work out the lagrangian formulation of the Navier-
Stokes momentum equation since it won’t be used thereafter (see Bennett (2006, chapter 5) for the case of
a rectangular coordinate system).

[.4. Boundary conditions

Coming back to the particular case of water waves, we now assume that the physical water domain Q(t),
at time ¢ > 0, is encompassed between two d-dimensional surfaces I'y, the water’s bed, and T';(¢), the free
surface (see figure 2.3), both extending to infinity in the Z direction(s). Rigorously speaking, 2(¢) is defined
using the notion of admissible paths (definition 1.11). Extensions to infinite water depth is straightforward.

Euler’s equation in the label space constitutes the basic PDE used to describe water waves. As in the
eulerian frame, it should be supplemented with the correct set of boundary conditions in order to describe
water waves correctly. To express them in a simple manner, we shall make some hypothesis regarding the
chosen label space Q.

Definition 2.5. A label space Q) C R s said to be admissible should it enjoy the following properties:
1. Like the physical domain of a non-breaking wave, it is an “extrusion” of the d—dimensional space. That
is, each point a € Q) can be written as

a=(ab) with GeR! and —B(d)<b< h(d).

2. The free surface is labeled by the set T'; = {(@,b) : b= h(d)} C €.
3. The lagrangian water’s bed 1"y corresponds to the condition b = ((a).

64



The easiest way to achieve such admissible label space is to take 0= Q(0) for an initially non-breaking
water domain with single-valued bed (i.e. H10 should hold, as in fig. 2.2). We could be more restrictive
as to assume that =0 and h = h, and end up with a flat strip Q=R x [0, ho]. This has the advantage
of transforming the normal derivative in physical space to a simple 0, in the label space. Finally, notice
that we cannot make the lagrangian free surface I‘Z time-dependent as it would be in contradiction with the
lagrangian advection (2.1).

Figure 2.3 — Schematic representation of the three-dimensional water domain Q(t) with (possibly overturning)
interface T';(¢).

[.4.1. The kinematic condition. Physically speaking, it states that the fluid elements lying on the free
surface should remain on the free surface. This is trivially satisfied by the interface elements a € 1"2 as a
consequence of (2.1).

[.4.2. The dynamic condition. In the absence of surface tension (H9), the pressure is assumed to be
constant on the interface, i.e.
p(t,d,b=h(@)) =0. (2.5)

[.4.3. The non-penetration condition. The fluid elements should never cross the physical boundary I';.
Pushing (1.10) into the label space yields

9,X (t,a,b=pa)) -, (t,X(t,a, b= ﬁ(a))).
We can go deeper by implicitly describing the water’s bed as the implicit equation B(x) = 0 for some
differentiable function B : R — R (whose zero-value level-set happens to be 3 pushed to the physical
space). The non-normalised normal vector is merely the gradient n, = VB. This allows to rephrase the

non-penetration condition in a more enlightening fashion,

0=0,X(t,d,b=pd))- VmB(t,X(t,a, b= 6(&)))
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— 9, [B(t,x(t,a,b - 5(&)))], (2.6)

that is, fluid elements laying on I'j initially remain on it at all subsequent times ¢ > 0.

The set of equations (2.3-2.6) is the Water Waves problem written in an admissible label space ). This
formulation encompasses overturning waves up to the moment the splash has occurred. In sec. 1.3 of the
introduction, we have reviewed the mathematical literature regarding this set of equations (or equivalent
lagrangian formulations).

[.5. Irrotationality and Bernoulli’s equation

The vorticity can be written in the lagrangian frame but this would not be enlightening. Instead, we
propose to take a completely different route by introducing the Cauchy invariant. It appears in the equation
as we follow the path that usually leads to the vorticity equation in the eulerian frame, i.e. starting from
the lagrangian form of Euler’s equation (2.4), we rewrite it in a way that involves potential terms only,

1 2 . P
0,(vux-0,X) =, (jox]) + ¥, (cp _ ;) . (2.7)
Taking the (lagrangian) curl of the above system yields a surprising relation,
9, (Va x (VaX : 6tX)) =0, =0,

with zo Cauchy’s invariant, also called the lagrangian vorticity (even though it does not exactly correspond
to the eulerian vorticity w written in the lagrangian frame). Integrating the above equation on a fixed
two-dimensional surface § C € yields Kelvin’s circulation theorem 1.6 readily. Therefore, the quantity ==
can also be named the circulation density. We shall use this last nomenclature in the following. The explicit

link between o and w is 1
weX,=—V_X
7 det(d) @
with straightforward adaptation in the two-dimensional case. The above formula is obtained easily using
the index notation (Bennett 2006).
The above link between the eulerian vorticity and the circulation density shows that zo = 0 in Q if and

only if w =0 in (¢). This can also be seen as a consequence of Kelvin’s circulation theorem. Furthermore,

- T,

since ) is an admissible domain, it is simply connected. Therefore, in the irrotational case (H11) we can
introduce a lagrangian velocity potential ¢ :  — R such that

V.p=V,X 0,X.

By the chain rule, we have simply ¢ = cz) = ¢ o X, the eulerian velocity potential. Inserting this definition
inside (2.7), we obtain exactly Bernoulli’s equation (1.35a) pushed to the label space (after a redefinition of
the velocity potential ¢ to incorporate the eventual constant as in sec. IV of chapter 1),

1 2 p
O — 5 0, x| + 5 d. (2.8)
On the free surface b = h(d), the pressure identically vanishes. From the above set of equation, we shall
motivate the Breaking Waves equations of Craig (2017) in sec. II below, thus shedding light on its purely

lagrangian nature.

Remark 2.6. The sign in front of the u? term in the above equation differs from the one in (1.35a). This
is due to 0, being the material derivative of ¢.

[.6. Water Waves solutions in the lagrangian frame

Before discussing a new formulation of the Water Waves equation obtained from the lagrangian form of
Bernoulli’s equations (2.8), we would like to discuss known solutions of the Water Waves problem in the
label space.
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1.6.1. Gerstner (1802)’s wave. Historically, this was the first solution ever obtained of the free-surface
lagrangian Euler system (2.3-2.6) in infinite depth. It happens to be the only finite-amplitude solution
with a closed formula. Denoting the two-dimensional components of X as (X, Z), erstner’s solution it is

kb
X(t,a,b) =a— - Sln(k(a — ct))
kb

e
Z(t,a,b) =b+ - cos(k(a — ct))7

for a € R, b € (—o0,0], k = 27/X (with X the wavelength as before) and ¢? = g/k the wave’s velocity in
deep water. A representation of this solution is shown in fig. 2.4.

=
L

[

o[>
o]
>

ol

8 ol

Figure 2.4 — Visualisation of Gerstner’s solution of the Water Waves problem for different values of b, i.e. for
different amplitudes, up to the threshold value b = 0 for which each crest becomes a cusp.

For b = 0, the free surface becomes a sharply tipped interface. Positive values of b yield non-physical
self-intersecting interfaces. More work is needed to append a physical interpretation to this solution (i.e.
translating vertically the solution so that the interface corresponds to a zero-mean perturbation of the z = 0
rest state).

Surprisingly, Gerstner’s solution is rotational. Indeed, its circulation density is given by

w(t,a,b) = 21/ gke?** + 0,

which decreases exponentially with the depth. As shown in Blaser et al. (2024), a direct consequence is that
the mean drift may vanish, and in fact it does so. This solution is sometimes referred to as the trochoidal
wave solution since, for fixed value of b, it corresponds to the parametric equation of an inverted trochoid.
Clamond (2007) obtained higher order Gerstner-like solutions over arbitrary depths.

1.6.2. Lagrangian Stokes (1847) waves. In his original paper, Stokes obtained a second order solution
of the lagrangian free-surface Euler equations in infinite depth which was later extended to seventh order
by Clamond (2007). We only provide the fifth order solution to preserve our reader’s mental health,

47 1 5
—0) — 3 5\ o 4 g 5 o
kEX(t,a,b=0) = Ka— (5—1—5 + 21 € ) sm(K@) —3€ sm(ZK&) € sm<5K0)
L2 4 L 5 L L s
kY (t,a,b=0) = 5(6 +e ) + (5— ¢ ) cos(KG) + 6¢ cos(?K&) + ¢ cos(SKH)
1 1
with K=k[1—¢?] and O=a—c(kit with c(k)= \/g {1+ FE+ §€4] :
with, contrary to chapter 1, e = ka where k is the wavenumber and a the amplitude of the first order wave.
This solution is compared to the classical eulerian Stokes solution at orders 1, 3, 4 and 5 in figure 2.5, using
the original computations of Stokes (1880).

The surprising aspect, shown in Clamond (2007) but also observed in figure 2.5, is that the lagrangian
solution converges faster than its eulerian counterpart. To the author’s knowledge, however, it has not been
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established that both series converge to the same solution. The first order solution has e.g. been used as
an initial condition by Baker and Xie (2011) to investigate the formation of a singularity in the deep water
regime.

— 1st order —— 3rd order —— 4th order

5th order

Eulerian solutions

A 3
2

Lagrangian solutions

T

A b\

p 2

|
ol
8 el

Figure 2.5 — Eulerian and lagrangian Stokes waves at time ¢ = 0 up to 5 order.

II.  The Breaking Waves equations

— Starting from here (H11) is made (see table 1.3)

Switching from the eulerian frame to the lagrangian one permits to study overturning waves. Therefore,
replacing the eulerian advection equation (1.20) by its lagrangian counterpart (2.1) and working with
quantities defined on the label space should allow us to carry out a new set of equation, the lagrangian
counterpart of the Water Waves equations (1.43). To do so, we follow the unpublished work of Craig (2017),
finding a more general formulation that also work in three space dimensions.

At first, we shall work without specifying an intrinsic coordinate system on the interface I';(¢), using a
geometric approach. This has the advantage to yield a dimension-independent formulation. However the
resulting, rather abstract, set of equation won’t be very practical. Therefore we will introduce, in a second
time, a set of coordinates on the interface (that is, a parametrisation of the latter). The one-dimensional
resulting system (d = 1) will enjoy some very nice properties while the two-dimensional one will be quite
more involved. Finally, we wish to investigate the non-canonical hamiltonian structure of the resulting
system, postponing a general discussion on wave breaking to the next section.

IT.1. The geometric approach

Our objective is to rewrite the Water Waves problem (in either the lagrangian or the eulerian frame)
as a set of equation on the free surface I';(¢) only, as was done to obtain the Zakharov—Craig and Sulem
formulation (1.43) in the non-breaking case. We hereby do it employing the language of differential geometry
(see appendix A for a brief review) as it yields a set of equations that does not depend on the dimension
d. For the moment, we assume that every quantity is smooth in order to correctly motivate the Breaking
Waves equations.

Let d = 1 or 2 the intrinsic dimension of the interface. A schematic representation of the problem at
hand in 2d (respectively in 3d) is visible in figure 2.6 (resp. fig. 2.3). The fluid domain is once again denoted
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using Q(¢) C R with bottom boundary T', (not necessarily a graph) and free surface T';(¢). Both T', and
T, (t) are assumed to extend to infinity in the Z direction(s), with a finite difference separating them (H5).
To this physical domain Q(t) corresponds, at each time ¢ > 0, a label space O c R with time-dependent
diffeomorphism X (¢, +) : Q0 — Q(t). We do not need to assume that € is admissible (def. 2.5) for now.

Extending X(t,+) or it inverse A(t, +) by continuity, we can define the lagrangian representation I' of
the free surface I';(t). We suppose that I', as a subset of R41, does not self-intersect. It can therefore be
equipped with the structure of a riemannian d—dimensional manifold, embedded in R%t!. We shall write
down the Water Waves problem on this very manifold.

f(t, 3)

Figure 2.6 — Two-dimensional representation of the physical domain with the different quantities used in this section.

II.1.1. Notations. Reusing our notation for d-dimensional quantities, elements of I" are written in lower-

case, 5 € I for instance, while elements of the tangent space are denoted with upper-case letters Ve Tgf‘.
Correspondingly, (d + 1)-dimensional element will be written as € R?*!, without making the difference
between elements of R%*! and those of T, R4l ~ R+,

We introduce the two unknown quantities that define unambiguously the flow, namely the time-dependent
surface embedding ~(, +) : I' — I';(t) € R and the free-surface velocity potential ¥(t,+) : I' — R. The
former corresponds to the trace of X(¢, «) since

I'=A(t,T(t)) = At =X({-)

while the latter is defined as the trace of the lagrangian potential

Wt +) = o(t, )], = o(t.(t,+)).

Remark 2.7. We used the term label space extensively here but we did not assume that it was constructed
from the lagrangian diffeomorphism introduced in section I. Indeed, X could be any time-dependent change
of coordinates with fixed domain. This important degree of freedom will be used to change (or preserve)
the surface parametrisation in time without changing its overall shape. Technically, the set of equations
that we are trying to obtain are written in an arbitrary lagrangian-eulerian frame (as the one that will be
introduced in sec. II below).

[1.1.2. The advection equation. The remark made above states that using the mere lagrangian advection
equation (2.1) on the interface I is somewhat reductive. Indeed, leaving the lagrangian interpretation aside,
we could allow the element s to slip arbitrarily on the free surface T';(t) without effectively changing its
overall shape, as long as it is done continuously in order to prevent it from “colliding” with another element.
This is in fact a geometric equivalent of the relabelling symmetry. However, by doing so we would drop out
the physical intuition that s € I effectively labels the exact same fluid element at all time.
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Consider the following generalised advection scheme (where § € ' no longer labels a physical fluid element
starting from now),

0y(t,5) = {U(t,v(t,é')) At §)}ﬁ(t,§)+7(t 3),V(t,3), (2.9)
—_— ————
€ R € Ny oTs(t) € Thysli(®)

where V(t, ) I — TT is a time-dependent vector field allowing the element § to slip freely on T, ; (1),
y(t,+), : TD' — TT,(t) is the derivative (or pushforward) of the time-dependent embeddmg ~ which takes
tangent vector fields on I' to tangent vector fields on I ;(t) (we could have used the V4" notation instead),
T,51;(t) being the tangent space of I';(t) at ¥(t,5) and where N, 5T';(¢) is the normal space of I';(t) at
~(t, §), such that

R o~ T, R = (T, oT(1) & (N0 T5 (1)) (2.10)

The normal space of T',(t) at (¢, §) is Spanned by real multiples of n(¢, §), the unit normal vector at (¢, 5)
pointing out of Q(t).

Notice that changing the vector field V does not change the geometry of the interface I',(t), only the
normal velocity contributes to its evolution. Among the many choices of sliding velocity field V, we wish to
discuss three important ones,

1. The “Let’s move with the flow!” choice, where

A(t,3),V(t,3) = u(t,7(t,5)) - [u(t,'y(t, 9) -ﬁ(t,é’)}ﬁ(t,é’),

so that 0,y = wo -y is the lagrangian advection (2.1) on the interface. This choice will be made in the
numerical method presented in chapter 3 and used in chapters 4 and 5

2. The “Who needs tangential velocity anyway?” choice, obtained setting V = 0. It makes the computa-
tions easier but does not seem particularly interesting aside from that.

3. The “I like the arclength parametrisation” choice, preserving the arclength when d = 1. It will be
constructed later, in lemma 2.13.

I1.1.3. The velocity potential and the Dirichlet-to-Neumann map. Since hypothesis (H11) has been
made, the velocity potential ¢ : Q(¢t) — R can be used. Exploiting the relation between ¢ and ¢, we obtain
readily that

aw(t,-) = d[o(t(t, )] =[xt -yolt, )] =it ) [ao(t, -]
and  (1,5), = ¢ (t,7(1,9)) °(t, ).,
with (¢, +)* the pullback operation. The exterior derivative defines an intrinsic, coordinate-independent,
notion of derivative on I';(t) and T, linked through the above relation. However, making use of the riemannian
structure (i.e. the metric) of T';(¢), inherited from R%*!, we can also define the gradients V¢ and V).
Let us be cautious here in order to define correctly the metrics. Let ¢ : T';(t) < R?*! the inclusion map.

At fixed € T';(¢) and § € I', we define the two time-dependent metrics

h(t,z): T,T;(t) x T,I';(t) = R such that h(t,z) = t*gy.q

g(t,3): T, x T, - R such that g(t,5) = ~(t,5)"h(t,7(t,5)),
with g, the Euclidean metric on R%1 and we recall that the pullback metric has been defined in appendix

A. Using the second metric tensor (also called the first fundamental form of the surface), we define the
gradient Vi using the f isomorphism,

Vi =dyf e forall Ve T, g(Ve,V) =dp(V),

The gradient V¢ is defined without ambiguity from the Euclidean metric. The metric h(¢) contains the
intrinsic geometry of the surface I',(¢). Since we are interested in recasting the fixed manifold I", we will
instead use the time-dependent metric g(t), giving to I' a time-varying Riemannian manifold structure.
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Notice that this structure is well-defined as long as (¢, «) remains a diffeomorphism from I to T;(t), i.e. as
long as no singularity has appeared (for instance a splash or a cusp).

As in the flat case, we would like to express V¢ using ¢ and «. To this end, we introduce some useful
notations. First, let g(¢, ) the determinant of the surface metric g, permitting to transform surface integrals
on T;(t) to integrals on I' through

[ rwasw = [ 5(3.9) Vaw s as
T5(t) T

This allows to define the Dirichlet-to-Neumann map in a normalised manner,

DtN[y = Va3 gd+1(V¢<t ~(t,3)), Alt, )), (2.11)

Wlth n( ,§) the unit-length vector, normal to I';(t) at +(¢,5) and pointing out of Q(¢). Should 9, €
yI';(t) be a normal vector, then

1
A =gt 9

8d+1 (0

with the plus or minus ensuring a correct orientation. The normalisation chosen to define DtN[~v]y will
become clear when we will investigate the Hamiltonian structure of the Breaking Waves equations. To
obtain this very system of equations, we need to state and prove two technical results. The first one is
concerned with the component of the metric tensor seen as a matrix in a coordinate frame.

Lemma 2.8. Let S € I'. Let (U§7 {sj}> a chart about § in T' and (V,N’g), {yj}> another one about v(t,3) in
T;(t). We write, on the tangent planes T,I' and Ty Ti(t),

%:k<ﬂ = g(t,5)(9,:,0) and g7 = [g(t, 9]
h;; = [ } = h t,~(t, s))(a i,0,1) and hil = [h(t,'y(t,é'))_l]

Then the quantities defined above are related through

d d k s d_ d k 4
_ZZC’?@ °) 0y ) k@_zza(y MY ) 4
a 95’ g e omd hT= 95’ o519

k=1 ¢=1 i=1 j=1

Proof. In a coordinate system, we see readily that

:iwww>a
0si  Oyk

k=1

. 0
~(t,5). ( 997 |-

From the definition of the metrics h and g, we get

~(t,5)

8 6 d 8(yk o "Y) 8 d a Z/ © 7
g (2] 2] ) =n(tAs o O
9i; = 8(1:5) (382 ¢ Osl *) (t’7(t,8)) (kz—; as' Iy* ~(t,5) 7; OsI 83/ ~(t,5)
44 d d
3 ayov yt o) - ( 9 ) ) A(y* o) Ay* o)
_ ' h t,")’(t, S) —_— N~ i - hkﬁa
) ; 3 J ( ) O Ly O Ly 21; os 0

which is exactly the first relation. To obtain the second, we denote by A the matrix with components
A;; = 04i(y’ o), so that we can rephrase the above relation in matrix notation (by slightly abusing the
notation for h and g to identify them with their matrices in a coordinate frame) as

g(t,5) = Ah(t,~(t,5))AT.
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By definition, each matrix in the above algebraic equation is invertible. Taking the inverse yields the second

relation. O
The above result can ne used to obtain a link between the tangential component of V¢ and ﬁw. This

provides a useful decomposition of V¢ as the sum of a tangential and a normal component as follows.

Lemma 2.9. As in the previous lemma, let § € I' and (Ug,{sj}) a chart about § in ©'. Contrary to the

previous lemma, we work now in R¥Y so let (W (t,8): T {yJ}) a chart about y(t, ) in R4 such that n is

~
a normal coordinate and {y’} are tangential coordinates. Then we can write
¢ W 9 SN kg OV A

(t77(t7 5)) (97 + Z Zg ( ) (t S)7<tv S)* @ R
where g™ = 1/84,.1(0,,,0,,) on the interface. The normal term can be related to the Dirichlet-to-Neumann
operator rapidly. O

Vo (7@) §)> =g (t’ 7(t7 §>> %

ly(t,5) =1 =1

Proof. Using the notations of lemma 2.8, we define the representation of the Euclidean metric g; ; in the
(n, {yJ}) coordinate system on a point (¢, §) of the free surface I, (¢),

~(t,5) )
=i | 73 .
~(t,5) 9y ~(t,3)

0
Since, by of the decomposition 2.10, we have g;,1(9,,0,;) = 0, the quantities g,,, and {h,;} completely

0

Inn <t7’7(t7 §>) = 8411 (an 0

" on

~(t,5)

9

and By (t,v(t,8) = h(t,y(t,3)) (a.zi

~(t,8) ~(t,8)

' Oyl
ny Yyi
describe the Euclidean metric g,,; on a point of the free surface I';(¢).
We have the following decomposition of the differential d¢ at a point (¢, 5),

d
dg| :g—‘bdn] 4 —&-Z%dyj’

7(t,5) no s =y 7(t,5)

Setting ¢"" = g,,!, we can use the above expansion of d¢ to obtain the following representation of the
gradient vector in T, R4,

¢ 0

Ve=yg on on

d d
o
g~
St ] 0

¥(t,8) =1 j=1

We can rephrase the second term using lemma 2.8 and the chain rule in a coordinate frame, yielding

)

which yields exactly lemma 2.9 once plugged into (). (Maybe Einstein’s summation convention is a clever
idea after all.) |

Lemma 2.9 also permits to write down the (Euclidean) norm of V¢ in an interesting geometrical form.
Indeed, at an interface point (¢, s), we have

2

2 nn S S zawaw
Ve[ =9 ( >+Zzgjasi@'

=1 j=1
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We can rewrite this in a coordinate independent manner as

DEN[y]¥(t, 8)

T ) +g(t,5) (Vi(t,5), Vi(t, 5)).

w?(t,(1,5)) = | Vo[ (£ 7(t,5) = (

The above right-hand side contains quantities defined on I only, as wanted.

II.1.4. The Breaking Waves equations: geometric form. We now have all the tools required to mo-
tivate the Breaking Waves equations in their most general form, that is in a way that does not depend on
the reference label space I'. Coming back to Bernoulli’s equation on the interface (1.35a) and the gener-
alised advection scheme (2.9), using the geometric decomposition and the Dirichlet-to-Neumann operator
introduced above, the latter becomes
DtN t,s) ... . .
0(t,8) = M n(t, s) +~v(t,39),.V(t,3). (2.12a)
a(t, )

To obtain an evolution equation for ¢, we combine the above advection scheme with Bernoulli’s equation as
such,

Opi(t,3) = 0, 0(t,7(6,9) | = (0,0) (t.7(t5)) + 0,7(t,5) - Vo (£, 7(1,5))

DEN[y]¥(t, 8)

T ) +g(t,5) (Vi(t,5), V(t,5))

:g.ymgy—gv¢@xﬂuaﬂ2+<

1 (DN E)”
ot ) g

+g(t,3) (W(t, 8),V(t,5) — %W(t, 5)), (2.12b)

inertia

with z o 4 the z component of . The set of equations (2.12) are the Breaking Waves equations (a
name proposed by the author but which remains to be accepted by the community) in their most
general geometric form. As advertised, all the terms that appear only involve i or «, i.e. the full
Water Waves problem (1.53) has been written on the, possibly overturning, interface T';(¢), pulled back
to a fixed label space I'. Notice that the quantities DtN[v]y, i, g, g and even @@/} all depend implicitly on ~.

Remark 2.10. Should we have chosen a fully lagrangian advection scheme (i.e. setting V= @w), the
above system would become

_ DtN[]y

n o+, Vi
NG

Oy

DIN[y]e)”
Op = —g(zo7) + ;(:w)

In this specific case, we have the link with the lagrangian potential 1) = ¢|; and we can use (2.8) instead of
(1.35a) in order to obtain (2.12b) more easily.

1 o =
+§g<V1/1,Vz/;).

Remark 2.11. On the other hand, setting V=0 (i.e. keeping the normal velocity advection only) yields
only a slightly different system,

_DINpIY L g

0y Y.V
! V8

2
1 (DEN[]9)
oY = —9<Z 0’7) + 5?
Remark 2.12. Reading the motivation of (2.12) presented here once again, our concerned reader might
notice that these equations actually represent “possibly overturning water waves” in R4! for all d > 1.

5 8(VeTy).
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I1.2. A less geometric derivation

The geometric approach presented above is rather convenient to express the equations in a concise
manner. However, presented in this way, the equations may not be easy to work with. We could set I =R
and write these equations in a coordinate frame advected with the flow instead. It would suffice to write
down each element in a coordinate system, as was done in sec. I1.1.3. We propose a different way of obtaining
the system (2.12) expressed in a coordinate system, which is not based on tools from differential geometry.

[1.2.1. The one-dimensional case. Let s € R the curvilinear coordinate of the time-varying jordan curve
(i.e. a smooth curve which does not self-intersect) ~(t, ) : R — R? representing I';(t), i.e.

T;(t) = U (¢, s) such that

seR

d| #0.

Since T';(¢) can be seen as a perturbation of the flat oceanic surface {z = hy} (fig. 2.6), we assume the
decomposition
As +7,(t, )
t = € .
7( 33) |:h0 + ,yz(t7 S)

Note that in the above decomposition, the parameter s cannot carry an intrinsic physical dimension. Adap-
tations to the arclength parametrisation is made by removing the A factor. We can introduce unit tangent
and normal vectors T and n at (¢, s) through

T(t,s) = ———= and n(t,s) = 7(t, ),

with 7+ the Z counter-clockwise rotation of 7 (fig. 2.6). At all interface points (¢, s), the set (¥,7) forms
an orthonormal basis of R4, In 2d (d = 1), we can easily construct such orthonormal basis; this shall not
remain an easy task in the 3d case. Expanding the gradient vector V¢ in this coordinate system yields

Vo(t,(t,9) = (lt,5) - Vo(t(L9) Jialts) + (7(t,5) - Vo (AL s)) ) 7(t,5)

(2(t,5) - Vo (t.7(t5)) )alt,5) + (9,7(2 ) - ot A(L,5)) ) m
S’y ’S

| DINIYJ(L8) ), O(s) Dy

0(t,s)| 0(t9)| |0,7(t, 5)]
with the Dirichlet-to-Neumann operator DtN[y]¢ defined by the above equation. One can check that this

definition is consistent with the more geometrical one (2.11).
The generalised advection equation (2.9) is rephrased in a more tractable way as

)

Byt s) = (ﬁ,(t, s)- Vo (1AL, s)))ﬁ(t, s) + v(t, $)7(t, )
_ DEN[y]y(t, s)

0(t,5)|

where v is an arbitrary time-dependent function representing the tangential velocity. Aside from the choices

v =0 and v = u- T, the following lemma provides an interesting choice for v (in one space dimension d = 1
only).

n(t,s) +o(t, s)7(t, s) (2.15a)

Lemma 2.13. Suppose that v(0, s) corresponds to the arclength parametrisation of T';(0) and that v is chosen
such that O,v = Ku - v, with k the curvature. Then ~(t,s) corresponds to the arclength parametrisation of
T;(t) at all subsequent times t > 0. |

Proof. In the arclength parametrisation, the following useful relations hold (the Frénet-Serre formulas),

0,7 = kn and 0,n = —KT.
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Therefore,

2
0. ) = 20,7 0.7 = 2|0,7]0.(9r7) - Oy
d.y 8s(<u-ﬁ>ﬁ+v%> ;=2
= 2(3311 — nun),

o

A5y
-2

9. (ﬁ@sun — ku, T+ 70,0+ m}ﬁ) 7

which vanishes if and only if 0,v = rku,,. We have used the fact that |0,y = 1 and we denoted u,, = u-n. O
Remark 2.14. The above lemma shall be used later, in sec. IV of chapter 4 to derive an evolution equation
for the curvature k.

It remains to obtain the evolution equation for . This is done from the chain rule, as usual,
oty s) = 0, (6(L1(t:5)) ) = 06 (L (t5)) + (L, 8) - Vo (L. s))

DtNhMt,@)Q b oty 00)
0,y(t, )| ’

av(t,s)]
DtNMW)2+W (v(t S)_lagd)(t,s)) (2.15b)
0.7(t.5) ]\ 2]

where we have incorporated the constant —gh, into the time derivative of ¢ without changing either the
physical velocity V¢ or the free surface parametrisation 4. The two equations (2.15) are the Breaking Waves
equations in one dimension (i.e. for a two-dimensional physical space). As in the geometric case, they take
more concise forms when choosing a purely lagrangian advection scheme or setting v = 0. In the former
case, these equations can be obtained more directly from the lagrangian version of Bernoulli’s equation (2.8).

=—g(ho +7.(t,s)) — %|V¢(t,'y(t, s))|2 + (

1

Remark 2.15. One can check that the system (2.15) is in fact exactly (2.12) written on I' = R. Indeed,
the various quantities appearing in (2.12) can be rephrased, in this particular case, as

2 2
95 = 911 = 8(0,,0,) = |0, g=0,7|
S R T 1 o) .
VY= 104 Bs 03, % (057 o ) =7
I o \° L v O
8(Vv. Vv) = (m) 8(VeV) = o1 0s°

" —1

We remark that v is the component of V' along the normalised basis 85’7‘ 0,. Notice that the parameter
space R is not equipped with the standard Euclidean metric but with the one deriving from the parametri-
sation .

11.2.2. The two-dimensional equations. When d = 1, we have been able to construct an orthonormal
frame (§,7m) on which the gradient V¢ was expanded readily. For a two-dimensional surface, we won’t be
able to use the rotation operator a’ as it is not defined for vectors @ € R**!. Instead, more work shall be
needed.

Let y(t, ) : RT — R*! a global regular parametrisation of the smooth free surface T';(¢), that is: each
point y € T';(t) can be written as y = ~(¢, §) for some unique §, and we have

0y, ¥ x 0,y #0 everywhere.

This means that the tangent vectors 8517 and 882’)/ are nowhere pointing in the same direction. A new
difficulty is that we cannot ensure that d, v - 9,,v = 0 at all time, even if we assume that it holds initially.
In a sense, the intrinsic coordinate system of I',(¢) is advected with the flow and can thus becomes quite
twisted. A unit normal vector is defined as

05,7 X O,y
Oy, v X O,y

S

(ta §) =
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Its existence everywhere is ensured by the regularity assumption. However, to ensure that n points outside
of the fluid domain (t) everywhere, we must also assume that the parametrisation « possesses the correct
orientation. Should it be the case initially, then it will remain so until a coordinate singularity appears.
We would like that I",(t) corresponds to a perturbation of the flat infinite oceanic surface I'y = {z = hy}.
Therefore we propose to see the parametrisation v as a perturbation of the flat Euclidean space R¢,

o [ X5 +73(t,3)
76.8) = [how(t@ '

Expanding the gradient V¢ is rather involved. Indeed, since {9,14, 0,2y, 1} is not an orthonormal basis,
we cannot expand it directly onto this basis. By construction, 7 is already unitary and orthogonal to the
two other vectors. We therefore only need to work on the two others. In order to build an orthonormal
basis of the tangent plane from 0,17 and J,.7, we use the Gram-Schmidt orthonormalisation process which
yields, at each § € R? and each time ¢ > 0, an orthonormal basis {5;, 85}

04y
04y

851"}’
8517‘

81:7-1: — g 9

1
and §:—[%ff-%+ with 7, =
2 1 — (%1 - 7_2)2 2 ( 1 2) 1

for j = 1 or 2. The set {8;,8,,n} forms an orthonormal basis of R¥*! along which we can expand the
gradient vector, yielding (all terms being evaluated at time ¢, physical position ~(¢, §) or label-space position

8);

Vo= (n-Vo)n+(5,-VP)s, + (5, V¢)s,

DtN[y]y . ~ “ 1 [A S . R AA]
=——n+ (- Vo)1 + —m— To— (T - To)T) -V To — (T9 - To)T
by IO Ty (7o (71 7)71) - V6) (R — (1 - 7))
DINl (71 VOIR + (7 Vo)7 = (71 7)[(71 - VO)7a + (72 Vo))
05,7 X 8527‘ 1= (71 - 7p)?
DtN["”’l[) o+ |3827‘2681wa‘917 + ‘8317|28527/}6327 - (8317 ' 8327) [asllffasz’y + 3521;[}6517]
851’)/ X 852’7‘ ‘881’7|2|8827|2 - <8817 ’ 8827)2
DtN[’ﬂq/} ~ 1 |: \8 2’)/|2 —0 17y - 0 2")/:| |:8 1’7:|
= + 0 Oy s s 3 s
0,770, deile) Ot 0| 95 0y Tounl | |0

_ DtN[’YW/ 'ﬁ—|— [aslw 8521/1] g,l |:agl")/:| :
3317 X aSQ’Y‘ 6527

where g~! is the inverse of the intrinsic metric tensor

g= |: |6s17|2 681'}/ : 6327:| )
gy - 0py |97

We notice, furthermore, that |0, v x 6'32’)'|2 = det(g) from a standard property of the cross product in R3.
Using the decomposition of V¢ and remembering the link between g and ~, we obtain that

2
2 DtN~]y o,
|V¢‘ = (det(g)) +[0a0 O] g ! [8823] )

We can now state the two-dimensional Breaking Waves equations. The interface advection equations is
simply

Oy(1,5) = (L) - V6 (t,7(6,3)) )L, 5) + 0y ()71 (£5) + v(t, )7 (t,5)

At 3) + vy (£, 8)7, (t, 8) + vy(t, 5) Tyt 5), (2.16a)
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for abirtrary tangential velocities v; and v,. In the meantime, the equation for the potential becomes
O =0,0+0,y- Vo
2
1 (DtN[v]¥) 10.aql0,] 1 0.0
=— e+ [0t 0 e G I 2.16b
g’y,z + 2 det(g) + [ Slw Szw] g <[|8527|v2} 2 |:852/¢) ’ ( )
with, once again, straightforward adaptations should the advection scheme be fully lagrangian or normal

only.

Remark 2.16. As in the one-dimensional case, we recover the geometric form (2.12) of the Breaking Waves
equations by making the following identifications,

8(0r:0ui) = Oy - 0y a=10,,7 % 0,,7]
Ly [0aw . 19
— 1 s o L g
V’w =8 |:852’l/):| T] Vs <|553’7 88] §>
g(Vo. V) = [00v Osv]g [83”/’] g(T0.7) = 0.0 0.0]g™ {'as“”“l] |
7 Ot o 0,20

Remark 2.17. (Giving to Caesar what belongs to Caesar) The one-dimensional system (2.15) was first
written in Craig (2017), where different tangential velocities have been discussed. The author only extended
this formulation to two-dimensional free surfaces.

Remark 2.18. In the above motivation of the Breaking Waves equations, we assumed that both the
interface v and the potential ¢ are in fact smooth. At a fixed time, taking a glance back at the equations,
we see that these are well-defined for interfaces in W1>°(R9) and potentials in H*'(R?) only.

11.3. Hamiltonian structure

Unfortunately, the canonical Hamiltonian structure (1.47) of the usual Water Waves equations (1.43)
does not extend to the Breaking Waves equations. Indeed, as already noticed by Benjamin and Olver (1982)
(making use of the extension of Noether’s theorem to Hamiltonian systems derived in Olver 1980) or Bridges
and Donaldson (2011), a Hamiltonian structure does exist but it is not canonical for the pair of variables
(v,v). We shall work in the d—dimensional reference frame R? (with straightforward adaptations to a general
reference Riemannian manifold I'). The energy associated with the system (2.12) is

Hiy.vi =5 [ wDNlw+§ [ (22 5va

1 - 9 205 7
2/Fi“)(b(n V¢)+2/Fi<t)z (2-n).

Ky, ¢] U]

K represents the kinetic energy while U corresponds to the gravitational potential energy of the interface.
We now understand the choice of normalisation of the Dirichlet-to-Neumann operator: it removes the /g
that appears when transforming an integral on I" to an integral on T';(¢). The fact that this Hamiltonian
functional corresponds to the actual physical energy of the system can be see multiplying the full Euler
equation (1.6) by u = V¢ and making use of the various boundary conditions to carry out integrations by
parts.

We now compute the variational derivatives of H with respect to 1) and «. This last two quantities are no
longer considered time-dependent. We should not even use the fact that they are solutions of the Breaking
Waves equations (2.16). Therefore, in the following, the interface described by -y shall be denoted by T.

The parametric Dirichlet-to-Neumann operator possesses the same properties as the standard one, i.e.
it is positive definite and symmetric. Hence, variation of K along v (for the L?(R%) scalar product) is rather
easy to obtain,

Ky, + ] = / (6 + ) DIN[] (o + 1)

Rd
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= K[v, 9] + / hDtN[y]y + O(h?)

Rd

= K[, +4dhf5—z +0(h?).

Since U does not depend on ¢, we have that J,H = §,K, and we see that

n-o oH P H n
: = — or = —
T V7 5 det(g)
with n the non-normalised normal vector. Splitting the one-dimensional and two-dimensional computations,
the variation of the potential energy U with respect to -« is computed as

(1d) (2d)
- g g 2
[7+h] - 5 (7z+hz)8s(7w+hm) - 5 2(’72+hz) z- (81(7+h> X 82(’7—|-h>)
R
2 2
= Ul +g [ F0h, +7.h00 = Uhl+ 94 ohoE 4 £5- (0h X Oyy+ 0,y x Oyh)

=Un]+ gévz(hzas% —h,0,7.) =Ul]+ 94 VohZ mt ke (07,2 X 0y — 0,7.2 X 0y)

=U['7]+9/7zh-n U[7]+94 vh2n+yh-(n-2+n-g)

R
oU oU
= U + h = = U + / h =
e [ bl [ nes
In both cases, we obtain that
U n
972 = dy det(g)

This results extends to higher dimensions as well.

Finally, the variation of the kinetic term along = is more involved. The idea is to suppose that the
variation h lies along the normal n to the free surface I';(t) (see figure 2.7) and further decompose it as a
positive part and a negative part. The tangential variation cannot contribute to the dynamic of the system
as it corresponds to a mere reparametrisation. Hence, we assume

h(8) = h(s)n h(s) = h,(5) + h_(5) and h, =max{h,0} and h_ = min{h, 0}

We can carry out the computations for A, and h_ independently without loss of generality, because of the
linearity of the derivative. We shall only provide details for the h_ part.

him

T 06 00=T T Qust 09, =L, T Qost 99 =T

Figure 2.7 — Notations used to compute the variational derivative of the Hamiltonian H[v, ] with respect to =.
The bottom boundary T is not shown.
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Let us define v, = y+h, n. Since h, > 0, we have Q C Q_ (figure 2.7). With these notations at hand, we
define the solutions ¢ and ¢, of the following Dirichlet problems associated with the Dirichlet-to-Neumann
operators

Ap, = 0 inQ Ap = 0 in{
DtN[v, ] : { ¢, = 1 onl, and  DtN[y] : { ¢ = ¢ onl
0,0, = 0 only 0,0 = 0 only

We have to be careful about what we actually mean by the boundary condition ¢ = v and ¢, =1 onI" and
I', respectively. We actually want

s(v(5) =0 and ¢, (v,(5) = ().

We are now in position to derive a useful relation on the boundary, keeping in mind that ¢_ is defined
in Q whereas ¢ is not defined in all of Q_ (figure 2.7).

6, 0(s) = 6. [, (5) = h ()(s

~
—

= 9(E) —h (DA(E) - (Vo 07, (3)) +O(h?)
= 6073 —h (Hn(3) - (V. o7, (3)) + O(h?)
= ¢o(5) — h, (HA(3) - (Voor(3)) + O(h?).

In general, we should always keep in mind that ¢| = ¢, | + O(h). We cannot postpone the computation
of 6, K any further; it is now time to make use of the above relation. Let us begin with

Kly+ hyn, ] = ; W DNy + b, At

/ 6,0, = / 6.0,0. - / 9,6
KWM+QL@V%’l@Vﬂ+é+JVmﬂ'

We denote by g the intrinsic metric of I' (and we won’t need the metric on I' ). We first compute the last
integral appearing in the above relation, using the Taylor-Cauchy formula,

(\V@] () + () )+ 0(1)| ()31 a5
(9| V.| (v3)) Vaet(g)(5) ds + O(h?)

) 2

h.(3) V4] (4(5)) Vdet(g)(5) ds + O(h?).

The two other integrals provide a link with the Dirichlet-to-Neumann operator,

=
> — —

©-
i
—
2

—~
W)
S—
~—
_|_

3‘

[ (we.f =Ivef") = [s.0,0. 00,0
Q T
= [(60=1,0.6,)0,(6, ~,0,0,) ~ 90,0
r

= [ [ 1000 )0,0) = 60, (h.0,0.)] + O0)
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=_2 /h+(6n¢+)(8n¢) + O(h?) (symmetry of DtN[’y])
T

det(g

:_2/ h+(DtN ) Vdet(g) + O(h?).
Rd

The same relation is obtained for the negatlve perturbation h_. Combining the above equations we obtain
finally

A [ e o (DN ) )
Kh+h+n,¢]—Kh,w]:/Rd2 g(vw,w)—(det(g)) n- (h) + O(h?)
-/ ‘;5 Ah + O(h2).

Remark 2.19. We do not compute the variation of K in the tangential direction since it will not contribute
to the dynamics of the system. Indeed, the symplectic form J(v) that will be introduce below only sees the
normal component of 4. H.

In the end, we can put both the one-dimensional and the two-dimensional Breaking Waves equations
(2.15,2.16) in the following “Hamiltonian” form,

n oH .
oy = doig 50 + tangential terms 2.17)
o = —— M+ tangential ¢ '
) = doig oy angential terms

The tangential terms correspond to the non-physical information concerning the position of the labels (¢, §)
on the interface I';(¢). They do not contain information about the shape of T';(¢) and they disappear should
we set the tangential velocity V=0

We now extract the symplectic structure of the system (2.17). It is, in contrast with the Water Waves
system (1.47), non-canonical. That is, the operator appearing in front of the variational derivatives of the
Hamiltonian H is not the symplectic matrix J. Instead, we define the following operator

Jv) = [0 Ean(n. ')] .

n 0
We see readily that J(v)? = —det(g)1,,,. Therefore, system (2.17) can also be written as
9, m _ d [5 H v
vl A 6 H Y
In particular, working with the V = 0 equations, we obtain the conservation of the energy H [’y(t), w(t)].

} + tangential terms or —J(v)o, [ ] [5 H] + tangential terms

o,H

Remark 2.20. The one-dimensional symplectic structure was obtained by Craig (2017) following the
same type of argument. However he used a functional scalar product defined on the interface T';(t), which
depends implicitly on the parametrisation «y. Therefore he obtained an non-normalised symplectic structure.

Remark 2.21. Olver (1980) extended the definition of a symplectic structure to consider operators J
depending gently on the unknowns. The present formulation is encompassed into this generalisation.

Of course the computations carried out in this section are purely formal. A more rigorous approach
would be to follow the method introduced in Lannes (2005, 2013b): working in a fixed flat domain § instead
of Q. The author has not yet tried to implement this method. We however mention the work of Bridges
and Donaldson (2011), in which the authors carried out a lagrangian formulation of the Breaking Waves
problem and obtained the associated Hamiltonian structure. However, their formulation is not phrased on
the interface only as both their Lagrangian and Hamiltonian functionals are integrals taken on the full two-
dimensional (with a 1d interface) flat strip §. Their resulting system does not follow a canonical structure
either.
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1I.4. Non-dimensionalisation”

To obtain a non-dimensional formulation of the Breaking Waves equations, one should be careful. Indeed,
all parametrisations do not carry the same intrinsic physical dimension. For instance the arclength parametri-
sation is a length by construction but, working in a label space looking like a flat strip § = R¢ x [0, 1], the
corresponding vertical parameter cannot be a length as it extends from 0 to 1, no matter what the physical
height of the water column is.

Having in mind that s does not always correspond to a length, we notice that all terms appearing in
(2.12, 2.15 or 2.16) do not depend on the dimension of §. Indeed each term involving V is counter-balanced
by another. Therefore, in the following we shall assume that s has no dimension to make the computations
easier, without loss of generality.

We only provide the non-dimensionalisation of the one-dimensional Breaking Waves system (2.15) for
the sake of simplicity. The chosen fiducial scales are defined in table 2.1. We use the same scaling laws as
for the non-breaking case (table 1.2).

Scale corresponding to used to redefine
A Maximum distance between two crests (i.e. the maximum wavelength) — @,7v,,7, .

ho Average depth of the water column 2 Ve

ehy Typical size of a wave o

5)\\/giho The velocity potential’s typical order of magnitude o,

A/\/ghy Period of a linear wave in shallow water t

Table 2.1 — The chosen typical scales to non-dimensionalise the Breaking Waves equations (2.15). The parameters
p and ¢ are, respectively, the shallowness and the steepness/non-linearity parameters (defined in (1.24)).

[1.4.1. The normal and tangential vectors’. Since the horizontal and vertical components are rescaled
in different manners, the non-dimensionalisation process will unfortunately break the evolution equation on
7 into two parts. The normalisation factor |0,| becomes

0] = (0.07) + (0.0.) = N [(140,03)" + 22 (0,58)"] = 22

where the interface parametrisation if written as

o,

i

s+
’Yn = %Ku
14+ epny:

1

A

The unit tangent and normal vectors are then written as

~ ~ 1 A+ 0 7, 1 1+ b 'Yi . h ) —
= sle| — = s/ — 1) — d — b
T=7(7) |0,] [ 057, ] 0,47 l £, TY) =7 an h=n

The unit normal vectors 7 and 72 do not carry an intrinsic physical dimension. Therefore they do not change
under the process described above. However, to emphasise that they are now written in terms of ¥4, we
denote them as 77 and n®.

I1.4.2. The Dirichlet-to-Neumann operator®. The normalisation chosen for DtN[v]¢ cancels the nor-
malisation of n. We therefore have

DIN[yJ¢ = (A + 0,7, ) 0.0 — (0,7.)(0.9)

B eA/ghg . [Maﬂ(]ﬂ

B M azh ¢h

e/ ghg
7

—epd A
1+ 0,45

0.7 |(v) - T )t = VL0 Dl
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using the notations defined in sec. II1.3 of chapter 1. In the rescaled domain QF(t), 4% and ¢' are related
through the following elliptic problem,

ALt = 0 in Qi(tH)
# = ' on FE(th)
ny-Viet = 0 onl,

with ﬁ,i = ﬁ("/g) the normal vector to the non-dimensional bottom parametrisation 'yg obtained from the
dimensional one, denoted by ,, using the scaling described in table 2.1.

11.4.3. The non-dimensional equations’. Carrying out the process described in sec. 11T of chapter 1, we
obtain the following set of non-dimensional equations

TRV
Dyt = e DINT¥']¥ Ay + o177 (2.18a)
im0
2
1 DtN* [y ot |, 1094
Opt)t = —~ + —% ol P (2.18b)
2p2 \ [0,y 07| 2(0.¥|

Splitting the first two equation into vertical and horizontal parts yields a relation in which every ¢ and every
{4 appear,

EDINYIY e GDINYIR (4 000)

Opyz = N + v T2 5— 07 : (2.19a)
oo, o[ 9,7
TN 4 TV 29 A
1 DtN A . 1DtN 0.7}
Dt = —Qﬂni T —Qﬂ (14 0,7%) — —= 1 (2.19b)
R ep o D"

Future works on this set of equations shall decide which notation should prevail. The former is easier to
write down but some dependencies on € or p are hidden in the notations. This issue does not arise in the
latter.

We mention that carrying out asymptotic regimes of the above set of equations is not straightforward.
Indeed, one should first define an average velocity to do so. When no breaking happens, this can be done
over a vertical line starting from the topography and ending on the free surface (Lannes 2013b). In the case
of an overhanging wave, the questions seems far from trivial...

In the remaining section, we will work in the non-dimensional framework, but we will set e = p =1 to
simplify the presentation. We will also drop out the f§ superscript.

[II. What is a breaking wave?

In this ultimate section, we would like to discuss wave breaking. Indeed, depending on the author, the
words breaking waves can mean different things. We would like to propose a mathematical definition of wave
breaking (somewhat in the spirit of the experimental classification of Wiegel (1964) and later extended by
Galvin (1968)). With this definition, we will show (when d = 1) that the Breaking Waves equations can in
fact be reduced to the Water Waves equations as long as no breaking happens.

II1.1. Definition

Let us remind the reader some of the hypotheses that we make regarding the water domain Q(t) at time
t > 0. We assume that the water (modelled as a continuous (H1) fluid) does not mix with the air (H3)
and that no dry region exists (H5). The following discussion applies to viscous or inviscid fluids, with or
without surface tension. We recall the expansion of the parametrisation « of the interface as a horizontal
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and a vertical part as
| 8+7(,8)
¥(t,5) = L F ()

When d = 1, we have 7 = 7,. We then propose the following definition,

Definition 2.22 (Breaking). At time t > 0 the wave represented by the interface T';(t) has broken if the
differential of 3+ 5+ F(t,5), seen as a function R* — R, fails to be invertible for some 5.

For continuously differentiable surface parametrisations (¢, +), by the inverse function theorem this
amounts to say that (¢, +) fails to be injective. Another way to see it is that there exists a point § such
that the tangent plane I';() (represented as a plane in R%*! defined by the normal n(t,5)) is vertical, i.e.
the normal vector n(t, §) is horizontal.

Should we compare our definition with the classification of Wiegel (1964) (or Galvin 1968), this
corresponds to a plunging breaker. The other types of breaking waves present in this classification (spilling,
collapsing or surging breakers) are characterised by foam, bubbles, droplets or turbulence. These phenomena
cannot be described by the present model. For instance, a droplet would correspond to a disconnected
component of Q(t); thus yielding a non-continuous label function X (¢, ).

Remark 2.23. Coming back to equation (2.18) with explicit € and p, setting aside the arbitrary tangential
velocity v* for a moment, we see from (2.19a) that wave breaking is a O(¢?) nonlinear phenomenon. Indeed,

if the initial parametrisation is graph-like, i.e. *yi((), s) = 0, then the breaking occurs should 83755(15, s) <1
somewhere, which should happen for ¢ bigger than some threshold.

I11.2. Reduction to the Water Waves equations

With the definition 2.22 of wave breaking, we have the following result for a one-dimensional free surface,

Proposition 2.24. Let d = 1 and (v,v) smooth solutions of the breaking waves equations (2.18) (with
e = pu = 1), that do not break (in the sense of definition 2.22) on the time interval [0,T}). Introduce the
following functions,

Xt(s) =s+ ’)/ac(tv 3) ) n(tvx) = ’Vz(th;l(x)) and @(t,m) = Qﬁ(th?l(x))

They are well defined for all t € [0,T,) and the couple (n, ) is a smooth solution of the Water Waves
equations (1.43).
The above proposition should hold for less regular solutions of the Breaking Waves equations (2.18).

However, as long as the existence of solutions of this system has not been investigated, we prefer to state
the above result without discussing the regularity of, hopefully existing, solutions.

Proof. The idea of the following argument is to use v, as a space variables. Owing to the inverse function
theorem, this can only be done if d,y, > —1 everywhere, i.e. if no breaking occurs.

At fixed time t < Tp, let X,(s) = s+ v, (¢, s). The map s X,(s) allows a correspondence between the
parameter s and the physical variable . The inverse function theorem states that it is invertible at fixed
time ¢ < T}, by the definition 2.22 of wave breaking. We thus define X; ! the inverse of X,, making the
correspondence between x and s. It has the following properties (at fixed time t),

(X, o X7 (@) =2 [X7teX,](s) = (2.20a)

-1

9, X, (x) = [(ath) o X;l(@} [1 +0,7, (t,X;l(x)ﬂ - (2.20D)

With this s <> = correspondence at hand, we can define the usual variables of the water waves system,

n(t,x):%(t,X[l(x)) and go(t,x):z/)(t,Xt’l(;v)) (2.21)

Finding the equations for the time evolution of 7 and ¢ now carried out.

83



Two useful identities. Derivatives of n and ¢ with respect to « can be related to 7, and 1 in the following
manner,

0
Ocnlts) =0, (3:(1.X:)) = [0 (17) - 2.7 = (077 02)
, |
dotte) =0, (4(0.X)) = (X0

where we made use of (2.20) multiple times.

The normal and tangent vectors. It is now easy to compute the tangent and normal vectors as functions of
n and x. By an abuse of notations, we define

T(t,x) = ?(t,X{%x)) = gs’Y (t,X{l) and n(t,r) = 7(t,z)*

S

so that, using the same argument as in (2.22), we see that

_ 0, _ 1
0,7t X7) = T (X =2, [n@f xﬂ = [axn@,m)] !

so that, assuming that d,v, > —1 (by assumption on the non-vanishing behaviour of 9,7, for all s € R, if
it is initially positive, it will remain so at all subsequent times until the breaking occurs),

T ——— [ ! } and  Ata) = ——t [—f’iwn] .

V14 (0,1n)% 190 1+ (0,n)?

Adaptation of the above formula for right-to-left parametrisations of T';(t) is straightforward.

The equation for v,. Before computing 0,n and 0,, it is interesting to see what the equation for v, becomes
(as it should not appear in the final system). Since -, (t, X;l) = x, we have

0=20, (Vm(th;l))
= 07, (6 X7Y) + [+ 0,7, ] (6. X7) - 0, X7 (=),

Hence, making use of the equation for the evolution of 7, (2.19a) we get
_ 1 DENfyy _
0, X! =— [ n,+v7,| (t, X;1), 2.23
N Xy L ol et () 22

a very useful relation for the rest of this proof.

The equation for v,. We now have all the tools to compute the time evolution of 77 and ¢ from the Breaking
Waves system (2.18). We begin by transforming the equation on 7, on an equation for the evolution of 7,

on(t,+) =0,[1. (1 X))
=07, (6, X71) + 0,7 (8, X)X

DN[J4 - o
:<T<9[3|]¢") (8. X71) + (v7.) (8.77)

ot x) [DtN['y]z/;
149, (6 X 1) L 1941

DN, oy [- (6 X)
R (1. >ln 1+ 0,7, (6 X, 1) M

i, + v?z] (t. X7
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=[a-vo(ty(LX1))] m

1+ (9,n)* - V¢(trv(t7X{1)) = DtN[nje

where DtN[n] is the usual Dirichlet-Neumann operator, used in (1.43). We recover the advection equation
on 7 that appears in (1.43). The most striking aspect of the above computation lies in the remarkable
cancelling of the two terms involving the arbitrary tangential velocity v.

The equation for v». We now find the evolution of ¢ following the same procedure,
Oplt, ) =0, (6. X1 + 0,0 (8, X,71) - 0, X,
o] [Dtwar L { X }

a4k v
20 19 1057 10,7
oY 1 [DtN[4]9 . - -
- () [Pt e ()
— 4 1| DtNDle Op |,_L1_ %
2 | V1+(9,n)? 1+ (9,m)? 2/1+(9,n)*
_ 9 v _ 9,nDtN[n]e
AT 0?1+ (0m)?

2 2
1 2 1 DNyl 9up Oy 9,19, DtN[n]p
=—n—2(00) +35 || —m—m=| + +
1= 5(0%) 2{( T+ (0,1) L+ (0,1 L+ (0,)?

(DtN[l + 0,9, 0)

1 2 1
_ -_— —— a —
5(2:0) +3 1+ (9,7)2 ’
exactly the second equation in (1.43). Once again, the two terms involving v cancelled each other. O

Of course, with the definition 2.22 of a breaking wave, the condition “0,7, > —1 everywhere” may fail
to hold because of a ill-chosen arbitrary velocity v. This should not happen with the three possible choices
discussed in sec. I1.1.2.
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1

On the
Vanishing

Viscosity Limit
in Water Waves

In the previous part we have presented different models
describing (possibly breaking) water waves. Most of the
simplifications arise while neglecting the viscosity (H6) to-

gether with the irrotationality assumption (H11).

In the present part of our work, these two assumptions
are discussed in details using numerical methods that are in-
troduced in chapter 3. Chapter 4 is concerned with break-
ing waves over a flat topography. In this case both (H6)
and (H11) are shown to hold. On the other hand, when
considering finite-amplitude water waves over obstacles, the
latter assumption does not remain true because of the for-
mer. This is the subject of chapter 5. This turns out to
compromise greatly the vanishing viscosity limit.






Numerical methods fo;* the free-surface
Navier-Stokes system

“the human requires a background grid
through which to see his universe”

Frank Herbert, Dune (1965)

We are interested in investigating the effects of viscosity on water waves. This question is far from settled
as, phrased like so, it is quite formidable. Therefore we need to limit the scope over which we shall provide a
first answer to this problem. That is, we will only consider initially irrotational solutions to the free—surface,
incompressible, Navier-Stokes system (1.54) with the Lagrangian advection scheme introduced in chapter 2.

In all cases, the set of equations (1.54) must be investigated in some way. We propose to do so numerically.
The description of the computational strategy was unfortunately left out of Riquier and Dormy (2024a,b)
to keep these publications short enough. This chapter is an opportunity to present our numerical methods
thoroughly.

To the author’s knowledge, the first Navier-Stokes simulation of breaking waves is that of Chen et al.
(1999). Since that time, available computational power has greatly increased, allowing finer simulations,
three-dimensional numerical domains and more accurate interface tracking procedures. However, in all the
numerical studies that the author was able to find, the considered flow is two-phased, incorporates surface
tension and the interface is followed through an Fulerian advection scheme. On the other hand, since the
pioneering numerical work of Longuet-Higgins and Cokelet (1976, 1978) and that of Baker, Meiron, et al.
(1982), the inviscid studies seem to favour the Lagrangian advection scheme and mostly overlook the air
entrainment (maybe in light of the theoretical results of Fefferman et al. (2016) and Coutand and Shkoller
(2019)).

Our method aims at taking the best of both worlds in order to bridge the gap between viscous and inviscid
studies. Indeed we use a Lagrangian interface advection scheme and neglect the air. In the meantime the
flow is not assumed irrotational and the turbulence is not encompassed through the use of a turbulent
viscosity. Surface tension won’t be included in the simulation so that only the consequences of hypothesis
(H6) are investigated.

[.  The Finite Element Method

Hhe author acknowledges the thor-
ough discussions with G. Sadaka on
At the very heart of any numerical scheme stands the idea of casting the use of FreeFEM. N

a set of Partial Differential Equations (PDEs) into an algebraic system,
solvable by a computer. Contrary to the Finite Difference Method
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1 Galerkin (1915)

2The FEM is e.g. described in depth in
the classical books of Ern and Guer-
mond (2021a,b,c). We also mention
the fluid—oriented books of Pironneau
(1989) and John (2016). Here we shall
only give an introduction to FEM for
the sake of completeness and to ex-
plain some important optimisations.

L

Figure 3.1 — Schematic represen-
tation of the initial domain in 2d
(d = 1). The initial condition will
be described in sec. I.1.

3e.g. Chen et al. (1999), Deike,
Popinet, et al. (2015), Di Giorgio et
al. (2022), Iafrati (2009), Lubin and
Glockner (2015), and Mostert et al.
(2022).

4We remind the reader that the defini-
tions of the standard function spaces
can be found in appendix B.
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(FDM) and the Finite Volume Method (FVM) which use the strong
formulation of the PDE and approximate the differential operators,
the Finite Element Method (FEM) provides a procedure to discretise
the weak formulation of a linear elliptic problem by approximating the
functions themselves, using a well-behaved finite set of basic functions.
In a way, this method falls into the more general category of Galerkin’s
methods.!»?

[.1. The weak formulation of (1.54)

We briefly recall the problem at hand, motivated in chapter 1.
At a time ¢t > 0, we consider a time-varying domain Q(t) C R?+!
encapsulated between a rigid bottom topography I'y and a moving
water-void interface I';(¢) (fig. 3.1). The domain is assumed periodic
in the z direction.

The corresponding non-dimensional problem is reminded for com-
pleteness and self-containdness of the present chapter,

1
Ju+u-Vu— R—Au +Vp —z in Q(%)
e
V-u 0 in Q)
2 1.54 .
p——S()-h = 0 onTy) (1.54, rem.)
u-n, = 0 on I,

Remark 3.1. The Reynolds number Re is defined in (1.29) using hy
as the characteristic length of the system. This is well-motivated in
the shallow water regime as it appears naturally. Yet, most viscous
studies® prefer the deep water scaling with characteristic length \, the
(longest) wave-length, and characteristic velocity v/gA. Their Reynolds
number is denoted by

3
g 1
Redw = = 3 Re
VW ‘LL2
There are several alternative choices of non-dimensionalisation. In our
3
case, we have u~2 a~ 15.75.

Remark 3.2. We will also consider the system (1.54) with the Navier
bottom condition replaced by the no-slip/Dirichlet condition. The cor-
responding system (1.9,1.2,1.17,1.15) will be referred to as (1.54D)
in the following.

As already stated, the FEM makes use of the weak formulation of

(1.54). In order to compute it, we introduce the following vector-valued
functions spaces*

H%b<Q(t)) = {v € (Hl (Q(t)))dH s.t. v-ny, =0on I‘b}
d
H}. () = {v € <H1<Q(t))> "
The former shall be used for (1.54) while the latter enforces the no-slip

condition associated to (1.54D). The conditions “v-n, = 0 on I',” and
“v=0on I'y” must be understood in the sense of Sobolev traces.

1
s.t. v=20o0n I‘b}



Let v € C®(Q(t)4 n H%b (Q(t)) and ¢ € C*(Q(t)) some test
functions. We take the inner product between v and the first equation
of (1.54) before interating on all of (¢). Then, multiple applications
of Green’s identity yield |

ou 1
/Q(t) |:’U'a+’v‘(’II,'V)’LL‘F%V’I):V'LL*])V"U*’U'Q} da::/

T, UL (t) {

—pv + i'U«Vu -ndS.
Re

Most authors, like Guermond et al. (2012), start from the V-o(p, u) (o(p, u) being the stress tensor defined
in (1.8)) term in (1.54) (instead of the Laplacian Aw), making the computations somewhat simpler. We
choose to work out the variational form in this manner since it is quite enlightening. Thus, applying the
stress-free boundary condition (1.17), the integral on I';(t) becomes

/ [— 'v-i-i'u V'u,} ﬁdS——i/ v (VU)T ndsS
r,(t) Y Re - Re Tt .

To obtain a similar integral contribution of the bottom boundary I';), we must expand Vu - i as a normal
and tangential component and use the no-penetration condition v-n = 0. This is done in 2d in Riquier and
Dormy (2024b) but the same procedure applies in any dimension (Guermond et al. 2012). Indeed,

/Fb [—p’u—&—évVu] -ﬁdSzfie/Fbﬁ,x (ﬁ,xv)-[ﬁx (Vu-ﬁ,)] using v = (v-)f— 7 x (7% v)

= —L/ n X (ﬁ, X 'u) : [ﬁ, X ((Vu)T - ﬁ,)} dS using the Navier condition (1.14)
r

Re
1 T . . .
=—— / v - (Vu) -ndS since, once again, v -n = 0.
Re J.
Notice that, in chapter 1, the chosen direction of the normal to the bottom I' is i, = —n. Hence the two

boundaries contribute in the same manner. The boundary integral can then be transformed into a volume
integral, using periodic boundary conditions and invoking the divergence theorem,

1 T . 1 T
Re | v~<Vu> ~ndS:§ aQ<t)v~(Vu) -ndS
1 T
= Re - [Vv: <Vu) ] dx.

The weak incompressibility condition is obtained readily multiply-
ing (1.2) by ¢ and integrating over §(t),

/ qV-vdx=0.
Q(t)

The weak formulation of (1.54) follows by considering v € HII‘,, (Q(t))

and g € L?(Q(t)) only! and adding the integrals that have been com- ITherefore lifting the constrain on the
puted above. This yields the time-dependent weak problem of finding regularity of both functions.
uel! ([0’ T]; Hllb (Q<t)>> and p € L™ ([O’ T]; LQ(Q(t))) such that? 2Here is used the fact that
2 . m_
/ {v~a—u+v~(u~v>u+—5(v):5(u) Vo [Vut (Vu) | =
aw L Ot Re (3.1) —2 Vv S(u)

fpV.quV.uf'zyg} dx =0, =25(v): S(w),

because S(u) is symmetric by defini-
tion.

forallv e H%b (Q(t)) and g € L*(2(t)) and at all time t € [0,T).

Remark 3.3. In most theoretical studies, the incompressibility con-
dition (1.2) is incorporated in the definition of the velocity function
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Tt is shown in the classical book of space H%b (Q(t))l This has the advantage of completely eliminating
Temam (1984) that this does not de- the pressure from consideration. However such manipulation remains,
teriorate the structure of the function . . .

- . . to this day, purely theoretical as no conformal finite element space
space: it remains a Hilbert space for a . . o . . . . :
certain associated inner product. with the incompressibility constraint inherently incorporated into it

was found (John 2016, sec. 3.2).

Should we consider surface tension, the same type of computations

2Recall that Bo stands for Bond’s num- quickly leads to the modified integral formulation?
ber, defined as

0 2
_ Pwgnd / [v-—u+v-<u-V)u+—S(v):S(u)—pV-v
Bo=——, ot Re
Tw Q(t) (3 2)
in our p =1 case. —qV-u—U~g} da::/ kBo 'v-ndsS.
T;(t)
In 2d, the curvature k is unambiguously defined. In 3d, k corresponds
3That is, to twice the mean curvature of the interface (de Gennes et al. 2002).3
K =K1+ K. In the same manner, should we be interested in the Dirichlet prob-
Extension to any arbitrary space di- lem (1.54D), we would only need to replace the function space H, llb (Q(t))

mension is straightforward.

by H%b,o (Q(t)) in the problems (3.1) or (3.2).

1.2. Time discretisation

Before discussing how to apply the FEM to the spatial problem
(3.1), we briefly describe the time-stepping scheme that has been cho-
sen to discretise the J,u term. It is not surprising that the major
difficulty comes from the non-linear term w - Vu. In order to prevent
numerically costly. the use of a non-linear solver?, we chose to keep the first u explicitly
described using a single-step forward Euler method, at the cost of the
symmetry of the associated stiffness matrix (yet to be discussed).
If (u™, p™) denotes the state of the numerical system after n time
steps, two different schemes have been tried, both yielding similar re-

5A comparison between the two shall sults®.
be given in sec. IV

4

1.2.1. The implicit scheme. In this scheme, all remaining terms
SEuler (1768) are treated using a backward Euler method®, yielding the following
| space-only variational formulation,

Given a 0t" > 0 and a state (u",p"), find u"! € H%b (Q(t)) and p"! € L? (Q(t)) such that
e

n+l _ ., n 2
/[v.uétnu+v~(u”-V)u”+1+RS(v):S(u"“)—p"“V-v—qV-u”“—'u~g] de =0,
Qn

for all v € H%b <Q(t)) and q € L*(Q(t)) and at all time ¢ € [0, T]. Q" is the domain after n time iterations.
The domain advection scheme will be discussed in sec. II below.

1.2.2. The Crank-Nicolson scheme. Another possibility is to make
"Crank and Nicolson (1947) use of the Crank and Nicolson scheme” to achieve second-order time-
| accuracy while still having a single-step method,

Given a 6t > 0 and a state (u”,p"), find u™*' € Hf, (Q(t)) and p"! € L? (Q(t)) such that

/ U.de+1/ {v-(u”-V)u”“+i S('U):S(u”“)—p”“V-v—qV-u”“—v~g} dx
on ot 2 o, Re

+2/Qt{'v-(u -V)u +ReS(v).S(u) p"V.-v—qV-u vg} da =0,
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for all v € Hy, (Q(t)) and ¢ € L?(Q(t)) and at all time t € [0, T].

The time step dt™ > 0 does not remain fixed throughout the simula-
tion. It will be chosen using a FEM-equivalent of the CFL condition®.
It will be discussed in sec. III below.

[.3. Matrix creation

Having chosen a time discretisation, both problems I.2.1 and 1.2.2
can be viewed as elliptic, in the sense that “the information at one
point & € Q(t) depends on the information at all other points™? The
FEM was developed to handle such situation on non-rectangular ge-
ometries and exploiting the stabler nature of the weak formulation. Its
objective is to transform I.2.1 or 1.2.2 into (possibly very huge but fi-
nite) algebraic systems that can be handled numerically. The resulting
equation must hence take the form

Au =b. (3.3)
We call A € RV*N the stiffness matrix, u € RY is the discrete solution
and b € RV is the right-hand side, with N the number of degrees of
freedom.

[.3.1. Meshing. The first step that must be followed in order to
obtain a finite system like (3.3) from a given elliptic problem is to tri-
angulate the domain at hand. We rapidly describe the method in two
space dimensions and provide clues as to how to extend this method
in 3d.

Let Q a bounded, connected open subset of R? with Lipschitz
boundary 99 (fig. 3.2, up). For some chosen precision h > 0, its
corresponding Delaunay triangulation® 7"(Q) can be constructed fol-
lowing four algorithmic steps:

1. Discretise the boundary. A number n of points lying on the
boundary 02 are chosen so that the distance between two neigh-
bouring points is roughly h. Should the domain have corners,
the corresponding corner points must be chosen to preserve the
geometric information as much as possible.

2. Insert points inside the domain. Points are inserted randomly
in the domain. With prior knowledge of the solution, it seems
appropriate to add more points in regions where the solution
varies abruptly and less points where it is almost constant or
linear. When such knowledge is not available, there are many
possible ways to chose the interior points (for instance, in fig.
3.2, the interior points are chosen at random, which is far from
optimal). We denote by S C R? the set of boundary and interior
points.

3. Compute the Voronoi diagram. From the set S of points, the
Voronoi diagram?* is computed (fig. 3.2, middle). We can readily
formalise its construction. For two points p,q € S such that
p # q, we denote by H(p,q) the half plane whose points are
closer to p than they are to g,

H(p,q) = {x cR?st. [x—p| < |z—q|}.

Figure 3.2 — A 2d domain 2 and
its boundary segmentation (up),
interior points chosen at random
and the corresponding Voronoi di-
agram (middle), and the Delaunay
triangulation (down).

LCourant et al. (1928)

2In fact, this continuous problem is el-

liptic in the usual PDE sense (Evans
2010; Le Dret 2018). However, as
Re — +oo, the ellipticity condition
becomes more and more degenerate.

3Delaunay (1934). There exist other
methods to compute a triangulation.
However, in 2d, it can be shown that
Delaunay’s triangulation is optimal,
meaning that it maximises the angles
of its constituting triangles (compared
to other triangulations). This is shown
in theorems 2.8 and 2.11 of Cheng et
al. (2012).

4Voronoi (1908)
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Isee the algorithms presented in chap-
ters 3 and 5 of Cheng et al. (2012).

The Voronoi cell associated to p € S it then

Vorg(p)= )| H(p,9).
qeS—{p}

And the Voronoi diagram is the set of the Voronoi cells of all
points of S.

4. Construct the triangulation. The Delaunay triangulation associ-
ated with S is the graph 7"(Q) = (S, E) whose set of vertices is
S and whose edges are obtained from the Voronoi diagram,

E = {(p, q) € S? s.t. Vorg(p) NVorg(q) # @},

i.e. two points in S share an edge in E if and only if their
corresponding Voronoi cells are adjacent (fig. 3.2, down).

In practice, the Delaunay triangulation of a set of points is not
computed in this manner'. However, the method presented above is
easier to describe concisely. Examples of Delaunay meshes are shown in
e.g. figures 3.3, 3.14 or 3.16. In 3d, 7"(£2) is built in a similar manner.
The main difference is that the boundary 02 is a surface which must
first be triangulated. The step 1. of the algorithm presented above
becomes thus trickier. The curious reader is encouraged to cast a
glance at chapter 4 of Cheng et al. (2012).

Unsurprisingly, the Delaunay triangulation process yields triangles
in 2d. On the other hand, in 3d, it yields tetrahedra. In the following,
we shall use the word simplex to refer to a line segment in 1d, a triangle
in 2d and a tetrahedron in 3d.

Figure 3.3 — A rather fine mesh computed from the initial domain of fig. 3.1 using the default 2d FreeFEM mesh
generation method buildmesh. It contains IV, = 113436 vertices, N, = 222970 triangles and N, = 336 403 edges.
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1.3.2. Finite Element spaces. Once the domain €2 has been discre-
tised, we can now introduce a general method to expand a continuous
function f:  — R as a finite sum of basis functions ¢; (j = 1,-, N),
i.e.

N
flx) = Z fjd)j(w)'

The choice of the basis functions ¢; (and, incidently, the number of
degrees of freedom N) correspond to choosing a Finite Element space.
The basic idea of the FEM is to chose functions ¢; whose support is
spread over neighbouring triangles only. As shall be emphasised, the
resulting matrix will be sparse and enjoy very nice properties.



Figure 3.4 — A fine mesh corresponding to a breaking wave simulation (see chap 4) at Re = 10°. It contains
N, = 227275 vertices, IV, = 450648 triangles and N, = 677920 edges. Oscillations in the triangle density are visible
at the left end of the mesh. They are a consequence of the remeshing procedure PR (soon to be discussed), which

has been replaced by MA in the most recent version of the code.

PO elements. The easiest choice that can be made is to approxi-
mate f by a piecewise constant function. To do so, let N, the number
of simplexes. For j = 1,---, N, let 7’? C 7"(Q) the j-th simplex, with
barycentre ;. The associated basis function ¢; is defined readily as

qu(m):{l if xeTh

0 otherwise.

The approximation P9 [f] of f by P? elements elements is defined as

2

s

Pl = ) fl@))é;

=1

Such approximation is obviously discontinuous. Therefore, P° is
only L2-conforming!, meaning that we can only expect a L? conver-
gence of PY[f] to f as the mesh typical size h goes to zero. Should we
need H! convergence, other element spaces must be used. A represen-
tation of the finite element basis functions is available in figure 3.5.

P! elements. To introduce the most commonly used H'-confor-
ming finite element space, we introduce the important concept of refer-
ence simplex 7. In 2d, this corresponds to the triangle whose vertices
are (0,0), (1,0) and (0,1) (fig. 3.6). In 3d, the points (0,0,0), (1,0,0),
(0,1,0) and (0,0, 1) define the reference tetrahedron. Each point « in
the simplex T{L can be projected to a point y in reference simplex T
through a well-chosen diffeomorphism @, (fig. 3.10). In 2d, this affine
transformation is given by

a., —C-
. (y) = J,1 7,1
i) @j2 = Cjo

bja — Cﬂ"l] y+ [Cﬂ"l] : (3.4)

bj2—Cjo Cj2

with a;, b; and ¢; the vertices of T{l (a; has components (a; 1,a;5) and
similar for b; and ¢;). The inverse transformation can also be com-
puted exactly. Surprisingly, the jacobian determinant of this transfor-
mation det(V®,) is exactly the area of 77 . We shall take advantage of
this important property afterward. The 3d transformation also enjoys
these interesting particularities.

Figure 3.5 — A PY basis function.

(0,1)

(0,0) (1,0)
PO dofs = @
P! dofs = @

P? dofs = @ and ®

Figure 3.6 — Position of the de-
grees of freedom on the refer-
ence cell for different finite element
spaces.

LA finite element space V}, is called V-
conforming if V;, C V.
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Figure 3.7 — A zoom on the tip of
the wave’s mesh represented in fig.
3.4.

Figure 3.9 — A P} basis function.
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Having introduced the transformation ®;, we can now work on the

reference cell. In 2d, let d;k (k=1,2 or 3) the functions defined on T
by

pr=1—-x—y
Gy =1
3 =Y.

These reference basis functions vanish on all corner points of T but
one. Adaptation to 3d is straightforward. From @, and (bk we can
build the set P* of H'-conforming basis functions.

Let N, the number of vertices of the triangulation T7". To each
vertex x; we shall associate a basis function ¢, defined as follows:

£1() = { [6p 0@ () if €T and [§y o @] (x;) =1

0 otherwise.

That is, ¢, is the function which is equal to 1 at x,, affine in the
neighbouring triangles and 0 everywhere else (fig. 3.8). Therefore,
there exists N, P! basis functions allowing to expand a function f € H*
as

This decomposition converges to f in H' as h — 0 (Quarteroni and
Valli 1994, sec. 3.4).

P? elements. These elements are built as the P! basis functions,
but from quadratic reference functions ¢, instead of affine ones. As
with the P! reference functions, on the reference cell, each qgk vanishes
on all degrees of freedom (blue and orange dots in figure 3.6) but one.
It is worth noticing that the basis functions ¢, are not H?—conforming
because of a discontinuity in their derivative at edges of the triangles.
If N, is the number of edges, then there are N, + N, P? basis functions.
The link between the number of edges N, and the number of triangles
N, depends on the topology of the mesh through Euler’s relation (Ern
and Guermond 2021a, ch. 8).

We could, similarly, define P* elements of order k, using 3k degrees
of freedom in 2d and 6k degrees of freedom in 3d, on the reference cell
T . These elements are sometimes called Lagrange’s elements.

]P’(llC elements. The last finite element space that we would like to
discuss shall be used to handle the derivative of the velocity. To each
simplex, we associate d + 1 basis functions (d being the ambient space
dimension) defined as ¢;0® ;- The resulting basis functions ¢; € P}_ are
piecewise affine (as function in P!) but are discontinuous at all edges.
An example is shown in figure 3.9. There are 3NN, degrees of freedom
in this space. Also note that these elements are only L?-conforming.

1.3.3. Matrix assembly. Let us come back to the Naver-Stokes prob-
lem at hand. Having described the various finite element spaces used in
the present work, we can provide the algorithm to create the stiffness
matrices corresponding to the elliptic problems 1.2.1 or 1.2.2.

Having computed a triangulation (or tetrahedration) of the fluid
domain Q(t), each component of the velocity w is decomposed using



P? elements while the pressure is represented by P! elements.! This

composite finite element space V,, = (P2)¢ x P! is called a Hood and

Taylor spaceQ. 1We abuse the notation here by de-
As already stated, the divergence-free condition is difficult to han- ?iiinfndb:kf: dlgzreet‘:_‘l’:‘t];“;?)‘fjmjslz;

dle using the FEM. The major difficulty lies in the fact that we must (un+1, prt).

chose a composite finite element space satisfiying the inf-sup criterion

of LadyZzenskaya, Babuska and Brezzi (LBB)3. This is a necessary con-  “Hood and Taylor (1974)

dition for the existence of a solution to the discrete Navier-Stokes sys-

tems [.2.1 or 1.2.2. Let us summarise it here. At time ¢ > 0, for a pair

(w, q) lying in elements spaces W, x Q,, (W), being H'-conforming

and Q,, L?*-conforming), let the bilinear form

Th(Qm)

This integral is well-defined since

g€ L2 (:rh(m)) and w e [Hl (:rh(m))]d. o1 o,

The LBB condition asserts that the elliptic linear problems 1.2.1 or
1.2.2 have solutions if and only if there exists a constant 5 > 0 such

that
b
inf sup (wi’(n > .
9€Q,—{0} wew,,—{0} H<1||Qh||w||wh

Here, the norms on @, and W, are derived from the continuous
conforming spaces. Note that the LBB condition also provides the
well-posedness on the continuous level. The choice W), = (P?)¢ and
Q,, = P! satisfies this criterion (John 2016, ch. 3 and 4) but other
choices could have been made.* Figure 3.10 - The diffeomorphism
Knowing that our finite element space is well chosen, we can briefly ;.
describe t.he procedure.to a.ss.emble the stiffness matrix A. We disc.uss SLadysenskaya  (1969),  Babuska
the algorithm for the implicit problem 1.2.1 first. At the n—th time (1971), Brezzi (1974)
iteration, the state (u™,p™, Q™) is known. We introduce the bilinear
form a™ : (P2)? x (P?)? — R defined by
4Unfortunately, the easiest Hood-

Taylor space (P')? x P° does not sat-

v-utt! 2
a” (un+17 v) = / {n +ov-u" Va4 —S(v) : S(UTHI) - isfies the LBB condition.
i () ot Re

We also introduce the functional £ : P? — R describing the right-hand
side (RHS) of I.2.1,

v-u"
E"(’u):/ {gm—i—i}.
h () otn

The discrete equivalent of the implicit problem 1.2.1 that must be
solved to obtain the state (u"*1, p*1) is therefore rephrased as

a™(u™ 1t v) + b(utt q) + b(v, p" ) = L(v), (3.5)

for all v € (P?)? and ¢ € P*. |

We remind the reader that 77 (2") is the triangulated/tetrahedrated mesh after n time steps, on which the
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different quantities appearing in (3.5) can be written as

N, +N, N,+N,
n+l _ n+15 n+15 nt+ls _ ~ ~ RN
ut = § |:uj,1 €1 +ujy ey + ujs 83] oy v = § [Uj,131 + v o€y T (/‘7‘,333] oy
p= =1
N,+N,
n __ n n n
u” = [%‘,161 T ujq€y + “]}363}@53‘
Jj=1
NU NT/'
n+l __ n+1 —
prt = E Py, q= E 4%
=1 =1

where we have distinguished the P? basis functions from the P! basis, {€;},-1,...q being the orthonormal

basis of R and where the terms in blue are only present in 3d. Inserting this decomposition into (3.5), the
first term becomes

N,+N_, N,+N, +
v-unt! yileyl e u;L L -y,
ot Z ot ' AL
]h(Qn) ] 1 k' 1 7h<Qn)

In finite dimension, the condition “for all v € (P?)?” is equivalent to replacing v by ¢, €; and saying “for all
k=1, ,N,+ N, and all i =1,---,d”. We can apply the same procedure to the divergence-free condition,
replacing ¢ by any ;. The above term can then be further simplified as

N,+N,
vyt < - idg, g / 1
D DI - (R R
/mm) ot ; <5t han) ’

We would like to reassure the worried reader, the number of indices will decrease at least as quick as it has
increased. The other terms become

N,+N,

/ vou - Vurtl = Z é; - iddxd/ o u"- Vo, | -uit!
:7‘}L(Q’!L) J:l T}L(Q‘n)

N,+N,

[ swrswr=2 Y e (i [ Vo Vot [ Vee9e ) wt
rh(qn) ; TR () rh ()

Jj=1

NU
[ owveo=Ymt [ ue-ve
Th(Q") =1 n)

Th(Q
N,+N,

/ qVv - wtl = Z u:;L+l / wkv¢j
ThQm) j=1 Th(Qn)

We begin to see the block structure of the problem emerging. Our aim is now to express (3.5) using matrices.
To this end, we introduce the unknown vector x"1 € RANe+Ny)+N,

u;wl
n+1
Xn+1 _ uN,U+Ne
- n+1
Y21
n+1
Py,

We can then rewrite (3.5) as

M 0 n+1 n B c n+l _ sin g M 0 n
[O 0:|X + ot {CT O:|X =4t ol T 1o ol X" (3.6)
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with the matrices M, B € RUNotNe)xd(No+No) and C € RUNoHN)*No whose components are given by

Mkd+£,jd+i :67,,6 . ¢]¢k‘ fOI“ j,/{iE [[1’NU+N6]] and 7/,€€ [[076[—1]]
Th(Qm)

4
Braie jari =0i ¢ [¢kun Vo, + ﬁvd)k : V%}
T (Qn)

- 4 - . .

+é1 = / Vo, Vo, | €., forjke[l,N,+ N, andile[0,d—1]
Re b () J
de+£,j:/ 1/Jjézv¢k fOl"kE [[17NU+N6]]7j€ H]'?N’U]] and£€ H07d—1]],
Th(Qn)
and with
gde:g-é@/ o for k€ [1,N, + N_] and ¢ € [0,d — 1].
T}L(Qn)

The Crank-Nicolson scheme 1.2.2 is implemented readily as

M 0] .1 .[B C]x"4+x"  _Tg M 0],
[O O]X + ot [CT 0}2 =0t OJF 0 Ox.

In the literature, M is called the mass matriz. We notice that the C matrix enforces the divergence-free
condition and has absolutely no other purpose. Of course in order to complete this algebraic system, the
correct set of boundary conditions must be implemented.

[.3.4. Structure of the stiffness matrix. Taking a look at the
algebraic equation (3.6), we easily see that the stiffness matrix of eq.
(3.3) is nothing but

M 0 .[B C
A_[O 0]+5t [CT 0].

This matrix has an interesting symmetric block-structure, motivating
the use a Schur complement-based! solver. In fact, we could even get a ISchur (1917)
completely symmetric stiffness matrix A by using a symmetric version
of the problem I.2.1 (Guermond et al. 2012). This has, however, not
been tested yet.

At first sight, it seems that each constituting block of A is dense.
This is not the case since the support of each shape function ¢;, or
1y, is only spread over a few triangles at most. Therefore, the product
¢y, (or any other combination of ¢, Vé, and Vi) is far from filling
the entire rows and columns it lives in. A is therefore a sparse matrix
whose storage does not cause any major issue.

The main optimisations that allowed to greatly reduce the com-
putational time rely on both the shape of the matrix and the ALE
method that shall be presented in the next section.

II.  Arbitrary Lagrangian-Fulerian advection

In the previous section, the spurious discussion of the mesh-advection
has been omitted. Unfortunately, the time has arrived to tackle this
important, yet difficult, question: “Knowing the initial mesh 7"(Q°) =
Th (Q(O)), how is computed the mesh 7" (Q") after n time iterations?”
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lintroduced originally in Noh (1963),
and later extended by Hirt et al.
(1974). A modern introduction to this
method is available in Donea et al.
(2004).

14

Rd+1

Lagrangian y space

II.1. General velocities on the continuous level

In chapter 1, sec. 1.1, the proof of Reynold’s transport theorem 1.1
relied on the Lagrangian space in which the control volume remains
fixed, allowing to readily compute the time derivative under the inte-
gral. The basis idea of the Arbitrary Lagrangian-Eulerian method! is
to write the PDE in a reference frame that is neither Eulerian nor La-
grangian. This method is rarely introduced in a comprehensive and
rigorous manner. We propose to do so here.

Rd+1

Eulerian « space
Rd+1

Arbitrary z space

Figure 3.11 — The different spaces and diffeomorphisms used to motivate the Arbitrary Lagrangian—Fulerian method.

2Denoting by @, z and z the ele-
ments of V(t), V and W(t) respec-
tively makes the changes of coordi-
nates easier to see.
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To introduce the ALE method, some notations are needed. As
in sec. L1 of chapter 1, let ¥ C R ! a subset of the label space,
also called the y space previously, labelling the whole fluid at stake.
Going from the label space to the physical space, i.e. the x space, is
done through the time-dependent diffeomorphism ¥,. As discussed in
chapter 2,  and y are merely time-dependent systems of coordinates.
For an exterior observer, the fluid occupies the time-dependant domain
V(t) = Z,(V). .

We now introduce two new diffeomorphisms ¥, : V — W(t) and
®, : W(t) — V(t) such that the diagram of fig. 3.11 commutes. The
space W(t) is called the arbitrary space, whose elements are denoted
by 2.2 In the following, W(t) shall be the mesh. Having defined the
quantities we need, we can state the underlying philosophy of the ALE
method:

Solving the PDE (Euler or Navier-Stokes), expressed in W(t) using
the  variable.

We introduce (or recall) the following “velocities”,
u(t,x) = [(atzt) ° E;l} (x) the fluid velocity
o(t,@) = [(0,9,) 0 ¥, (@)

w(t,z) = [(0,:8,) ¥, (2).

The quantities v can be seen as the velocity of a point z fixed in
W(t) from a physical observer in V(t), while w is the physical velocity
relative to a point in the z space. We also set?

c(t,x) =u(t,x) —v(t,x),



the relative velocity of a fluid element at x with respect to the point
U, 1(x). This last quantity will appear in the ALE formulation of the
Navier-Stokes problem.

II.1.1. On the material derivative. We provide an interpretation
of the material derivative in terms of the various diffeomorphisms in-
troduced above. Let f :[0,T] x V — R a C! functions in both time
and (label) space. The lagrangian/material derivative corresponds to
0,f expressed at fixed . Indeed, pushing f to the eulerian x space
yields the function

F(t,@) = f(t, =7 ().
Then the time derivative of f, in the & coordinate system, is
(atf ° 2;1)(w) =0, (F ° Et) o Xy (z)
= 0, F(t, @) + <8t2t ° E?(-’”)) -V F(t x)

1

- (BtF tu- VmF> (t,z),
the material derivate of F. Another way to see it is that

(0 o= ) @) = [0,(f o =0t) +u- Vo (fo Tt (1 2).

The lagrangian derivative arises due to a time-dependent change of
coordinate of the 0, f term. The exact same computations yields the
lagrangian derivative in the z space,

(0f 007 (2) = [0,(fo 0t) + - V. (Fo i) t,2).

I1.1.2. The ALE framework. We are interested in solving the Navier-
Stokes equations in an arbitrary z space. Indeed, it will correspond
to the coordinate system of the moving mesh. However, as the La-
grangian frame, such set of coordinate might be highly non-euclidean,
yielding a messy form of the Navier-Stokes equations which may not
be very convenient to work with. The diffeomorphism ¥, allows to
use the euclidean nature of the eulerian frame to easily compute the
quantities arising in the z space.

Let U(t, z) = uwoW,(z) the eulerian velocity pushed in the arbitrary
space. We obtain readily that?

dyu=(8,U) o U —v- (V0 )(V U0V )
=U) o ¥ —v-V,u

1
=—u-Vu—Vp+g+ — Au.
Re

Thus, the equation for 9,U, recast in the eulerian frame, is?
1
QU)o V1 +c- Vu:—Vp+% Au+g. (3.7)

This is the fundamental equation of the ALE method. Fortunately,
the many space derivative appearing in (3.7) are expressed in the @
space, in which the differential operator are easily computed.

To the author’s knowledge, equation (3.7) was never cast in this
form before. Most authors use non-standard notations to make the
time-derivative of u appear, instead of 9,U. This prevents the estima-
tion of the error when replacing the first term with a finite-difference
formula for the eulerian velocity (see next section). This also intro-
duces misconceptions in the underlying philosophy.

3We show readily the link between ¢
and w,

c(t, x) = [w(t) : vz\pt] o U (x)

= [(w1) wt)](@).

1To ease out the notations, it is implic-
itly understood that

(F'o %) () = F(t» Et(fﬂ)),

i.e. the composition operator o applies
to the space-component of F'. This no-
tation is used for every functions of
time and space.

2using the fact that
OVt @) = —v(t, @) VU (),
which can be proved easily from

T, oWyl =1.

3We recall that ¢ = u — v.
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Figure 3.12 — As the mesh moves,
some triangles get elongated, as
in this (exaggerated) example. If
no remeshing procedure is imple-
mented, this eventually leads to tri-
angles being reversed.
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IFor convenience, we omit the fact
that 6t" varies between time steps,
therefore only writing Jt instead.
Modifications to include an iteration-
dependent time-step are straightfor-
ward.

Figure 3.13 — A triangle T af-
ter n time iterations moves with
a chosen velocity v"” and becomes
T at the (n+1)th iteration. The
physical velocity u" (blue arrows)
at time n is discretised at the ver-
tices of 7™ while u™*! is associated
with T7.

21t also provides the consistency of the
scheme.
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[1.2. Numerical analysis of the ALE scheme and im-
plementation

Having obtained the master ALE equation (3.7), we discuss how
it yields an efficient and useful numerical method. As already empha-
sised, in our case we are interested in having a lagrangian advection
scheme for the boundary points lying on the free surface. To do so,
however, all the points of the mesh must be advected at a velocity v™.
The choice of v" is of fundamental importance to prevent the mesh’s
simplexes to get deformed too much (fig. 3.12). Before discussing the
choices that were made in our case, we discuss the implementation
scheme.

We can summarise the most basic, first order, ALE scheme as fol-
lows. Having computed the mesh velocity v™ after n time iterations,
we replace the spurious term (9,U) o ¥, in (3.7) by a forward Euler
scheme for u,!
n+l _

ot

Then, the mesh is advected using a simple scheme: each vertex x,; is
incremented with velocity v™ so that its coordinates become

n

u u

(atU) ° ‘I’;l ~

T, — x; + ot v"(x;).

n+1

Therefore, at the end of the time iteration, the vector u does not

represent u(t + 0t, ) but the quantity
u(t + 0t, x + ot v(t, :c))

instead (fig. 3.13).
We can then formally show that such numerical scheme is first-
order in time. Indeed,

n+1l _

uéitun ~ % u(t+ ot @+ ot vt @) —u(tx)|
- % u(t +0t, W, 0 Ul 4 5t 0,0, 0 W) — u(tw)]
- % u(t + 08, Wy 5+ O(812)) 0 Uy — u(tm)}
- % U(t+6t,-) = U(t-)] o wit + O61)

=9,U(t,+) o Ut +0(dt).

This rather formal computation does not constitute a rigorous proof of
the scheme’s order.? For instance, it was assumed that W, s, o U1 is
a well-defined quantity. Carrying out a full mathematical justification
of this method would be an interesting future work. We could not find
any such rigorous treatment in the literature.

Another interesting open question is concerned with a possible
second-order ALE scheme, using a second-order Finite Difference for-
mula for u and a second-order advection scheme for the points of the
mesh Th(Q").

The first-order nature of the ALE scheme somehow explains the dis-
crepancy we have observed with the Crank-Nicolson scheme described
in 1.2.2. It has been observed that this formulation does not preserve
the energy, even after removing the viscous dissipation which can be



computed explicitly (see chapter 4). This is because the ALE scheme
introduces numerical dissipation.

So far, the ALE method was discussed to discretise the velocity
equation. It can be easily extended to any evolution equation with a
transport term. For instance, should we be interested in compressible
fluids, the equation for density would be transformed as

Op+u-Vp=0 — 0Op+c-Vp=0.

Another way to obtain the ALE formulation of the problem at hand
is to replace ™! in the time-discretised Navier-Stokes equation,

n+l __

ot

n

u +aun. Vu7L+1 — _Vpn+1 + l/A’U,n+1 + g,

u

by u(t + dt,z). In that case, the missing term?® arises naturally. This
shorter “proof” does not say anything about the continuous problem.
Therefore we chose to follow a different path.

[1.3. Two special choices of mesh velocities

Gathering all the considerations above, the implicit formulation of
the problem that is actually numerically treated using the FEM at
each time iteration is the following.

L4.e. the mesh velocity term

—v- Vun+1 .

Given a §t" > 0 and a state (u",p"), find u*! € H%b (Q(t)) and p"*l € L2 (Q(t)) such that

n+l _ ,n
/ |:v.’uétn’u+v.<unv”).v'u,n+1
Qn

2
Re

for all v € Hy, (Q(t)) and ¢ € L*(Q(t)) and at all time ¢ € [0, T].

We have emphasised the ALE correction in blue. This formula-
tion is then cast into a finite-dimensional system using the method
described in section 1.3.3.

Unsurprisingly, if we choose v™ = 0, we recover the eulerian formu-
lation of the problem. However the free-surface kinematic condition is
not satisfied in that case: the water—void interface must move. To ob-
tain this movement, two different methods were used, both with their
strengths and weaknesses.

[1.3.1. The elliptic mesh velocity problem. (Ell) Whenever the
bottom topography is non-trivial (as in chapter 5 below), it is prefer-
able to have non-moving vertices on the domain’s bed. In this way, we
prevent spurious, non-physical, geometrical deformations.

A way to build a mesh velocity v™ enjoying the features we are
looking for, is to solve, numerically, at each time iteration, the following
elliptic problem,?:3

Av® = 0 inQ"
{ v = u" onl7 (3.9

v" = 0 onlIy.
In this manner, the advection is Eulerian on the bed I') and Lagrangian
on the interface I'’. The corresponding variational formulation is
obtained readily. P! elements are used for this problem, yielding a

+— S(v) : S(u") —p"IV v — ¢V - u" — v g} de =0, (3.8)

21“? being the free surface after n time
steps.

3We recall that periodic boundary con-
ditions are used in the z direction.
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n fact, should we treat the non-linear
term of the Navier-Stokes system ex-
plicitly, the stiffness matrix would be
the Stokes’ matrix, regardless of the
chosen mesh velocity. However, this
numerical treatment quickly led to in-
stabilities of numerical nature.

2Such algorithm cannot be easily im-
plemented in FreeFEM since a direct
access to the mesh is not currently per-
mitted.

3For the sake of completeness, we men-
tion that the non-vanishing integrals
can be computed using an ezact Gaufl
quadrature since, by definition, the
terms ¢; o @, and ¢; o ¢} are mere
low-order polynomial in the reference
simplex T.

“We see from Reynolds’ transport
lemma 1.1 that the volume of an el-
ement being transported along such
field does not change. This particu-
larity is sometimes used to define a
divergence-free vector field.
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dN, x dN, matrix. Since the Navier-Stokes problem’s matrix is of size
(d(N, + N,) + N,)?, the cost of solving the mesh velocity problem is
small compared to the Navier-Stokes problem’s associated cost. This
method has only been tested in 2d yet, but its 3d extension seems
mandatory to consider non-flat topographies.

11.3.2. The fully Lagrangian problem. (Lag) Another choice can
be made: v™ = w". This completely eliminates the non-linear term
in the formulation (3.8), yielding the matrix usually associated with
Stokes’ equation, which is symmetric positive definite.!

The downfall of the fully lagrangian mesh advection is that, with
Navier boundary conditions (1.14), the fluid elements are free to slip
along the bottom boundary. While theoretically this does not cause
any issue, having a small but finite time step could lead to elements
not following the bed’s geometry perfectly. This spurious deformation
of the bottom boundary could be easily bypassed with a geometry-
preserving slipping algorithm.?

A surprising aspect of the lagrangian mesh advection scheme, and
more generally shared by every solenoidal velocities v™, is that the
stiffness matrix A does not need to be recomputed at each time it-
eration. Indeed, schematically speaking, each term appearing in this
matrix is a bilinear term of the form

Az’,j = / ¢7¢3
ThQm)

During the matrix assembly, this integral is computed on every simplex
separately using the reference simplex 7,

Ny
A= / 61(@)6,(x) d
k=1T}

Nt
-y /7 (6,0 (1)) (6,0 D, (w)) - det( VD, (1)) dy.
=1

Fortunately, the support of the basis functions ¢; and ¢; being spread
over a few triangles only, the terms ¢; o ®; and ¢, o @ often vanish so
that only a reduced amount of term actually contribute to the above
sum.? In 2d, we can see from (3.4) that det(V‘I)k(y)) corresponds to
(a constant multiple of) the triangle’s area,

det(V@k(y)> = (ag1 — 1) (bgo —Cro) = (ag o —Cpa)(by1 — 1)

A similar result also holds in 3d. The mesh being transported along
a solenoidal vector field, this last quantity does not vary through-
out the simulation.* This observation also applies to terms involving
derivatives of ¢;, and even to any other finite element basis functions
product. Therefore, the quantity A, ; represent the correct quantity
at all time. This observation saves non-negligible computational times
in every simulation.’This does not apply to the elliptic mesh advec-
tion scheme of sec. 11.3.1 above, however. This also does not prevent
the triangles getting elongated, as already discussed. This last issue is
solved by recomputing, or adapting, the mesh, as will be discussed in
the next section.

We have now described thoroughly our method to solve the free-
surface Navier-Stokes system (1.54) with a Lagrangian interface ad-
vection scheme. The algorithm 3.1 contains a pseudo-code implemen-
tation.



Algorithm 3.1: Breaking Waves simulator

input : An initial time ¢
A final time T' > ¢

An advection method advection_method (elliptic 11.3.1 or lagrangian 11.3.2)
A time-stepping scheme time_scheme (implicit Euler 1.2.1 or Crank-Nicolson 1.2.2)

output: A final mesh final_mesh
A final state final_state

1n<«0; /* Number of time iterations */
2 mesh(n = 0) < ReadInitialMesh(?) ; /* Initial mesh */
3 (u% p%) « ReadInitialState(?) ; /* Initial velocity and pressure */
4 mesh(n) < AdaptMesh(u’,p®) ; /* Adapt the mesh to the current state */
5 v0 is initialised ; /* Mesh velocity */
6 A < CreateNavierStokesMatrix(mesh(0),u’,p?, v",advection_method,time_scheme)
7 while t <T do
/* Beginning the time loop x/
8 0t" < ComputeDT (mesh(n),u™);
9 | t t+ 6t
/* Mesh advection (elliptic or lagrangian depending on the user's choice) */
10 if advection_method is elliptic then
11 v™ < numerical solution of (3.9);
12 A < CreateNavierStokesMatrix(mesh(n),u”,p™, v'*,advection_method,time_scheme);
13 else
14 L v —u";
15 mesh(n + 1) <+ AdvectMesh(mesh(n),dt"™,v");
/* Solving the Navier-Stokes problem x/
n
16 rhs < {g} + [l\(;l 8] Ll;n}, /* Navier-Stokes right-hand side */
u” 1 . .
17 [pn-s-l} — A " rhs; /* Solving the problem */
18 SaveRestartFiles(mesh(n + 1), u™t! pntl);
19 n<—n+1;

20 final_mesh < mesh(n);
21 final_state « (u”,p");

[II.  Implementation

We would now like to discuss the implementation of algorithm 3.1.
It is done using the FreeFEM c++ interface.! Through the time, the
underlying method did not change but many optimisations were made.
We try to describe them concisely here. We shall use references to this
section in order to keep track of which method has been used to obtain
the scientific results presented in the following chapters.

[TI1.1. Recomputing the mesh

We already mentioned that, as a simulation goes on, the trian-
gles get spuriously elongated (fig. 3.12, up). To solve this issue, two
methods were used.

IT1.1.1. Periodic Remeshing. (PR) In the code that was used to
obtain the results of Riquier and Dormy (2024b), the mesh is fully
recomputed after a physical-time interval has elapsed.? When doing

5The underlying idea of doing the com-
putations on a non-moving mesh cor-
responding to the Lagrangian frame
is closely related to the Characteristic
Mapping Method (CMM) (Krah et al.
2024; Yin, Mercier, et al. 2021; Yin,
Schneider, et al. 2023)

1Hecht (2012)

2This is done whenever output data are
generated.
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lleading to the uneven triangle density
that can be seen at the left of figure
3.4 for instance.

2This method was suggested to the au-
thor by Georges Sadaka in May 2024.

3 A common issue with mesh adaptation
is that, while it is well-suited for hy-
perbolic problems, for which the in-
formation travels at finite speed, it
cannot guess where the information
will lie in parabolic or elliptic prob-
lems. Usually, iterative methods are
employed to bypass this issue but they
are computationally costly.

so, the interface points that moved out of the [0, L] X R box (due to
lagrangian interface advection), are recast into this very box. The
difficulty is that the new mesh generated in this manner does not
encompass the former. Therefore the interpolation of the physical
variables in the new mesh is quite tedious: it must be done invoking the
periodicity in the z-direction. Unfortunately, when this is done, some
artifacts appear near the left and right boundaries of the domain'. By
chance, this did not yield any such artifact on the breaking region but
it led us to drop out this method afterward.

IT1.1.2. Mesh adaptation. (MA) A better remeshing procedure is
to adapt the mesh to the solution.? This must, however, be done with
prior knowledge of the solution. For example, a straightforward mesh
adaptation to an initially irrotational velocity would prevent the mesh
to fully resolve a hypothetical boundary layer (i.e. a parabolic region
in the flow) appearing at subsequent time.

The solution that has been implemented is to adapt the mesh with
respect to the velocity, pressure, and a third function f that varies
quickly near the boundaries I'(t) C 0€2(¢) on which many triangles are
needed,

flx) = exp(—C dist(:ar,gl"(t)))7

with C' > 0 a numerical factor controlling the number of triangles on
the boundary after adaptation. It is related to the number of triangles
on the same boundary before adaptation. The adaptation boundary
T'(t) is user-chosen. An example of such adapted mesh is visible in
fig. 3.14 (to compare with the non-optimised mesh of fig. 3.4 which
was computed with the PR method). In our cases, switching to the
MA method successfully divided the number of degrees of freedom
by roughly 4. Without this method, a 3d simulation would not be
tractable.

Figure 3.14 — A fine adapted mesh corresponding to a breaking wave simulation with a boundary layer on the bed
(chap. 4) at Re = 10°. It contains N, = 59532 vertices, N, = 117 729 triangles and N, = 174258 edges.

4Portable, Extensible Toolkit for Sci-

entific Computation, see Balay, Ab-
hyankar, et al. (2021a,b) and Balay,
Gropp, et al. (1997)
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1I1.2. Parallelisation

Even with an optimised mesh, the number of degrees of freedom
needed to carry out the simulations with the highest Reynolds num-
ber remains too high to work on a single thread. By chance, FreeFEM
possesses a native interface with the PETSc* c++ library and native
high performance domain decomposition methods.’Two different par-
allelisation schemes were used for the 2d code and a third one was
implemented for the 3d case.



Figure 3.15 — The coarse meshes computed from the fine mesh of fig. 3.14. The mid-level mesh (up) contains
N, = 25854 vertices, N, = 47947 triangles and N, = 73798 edges. The coarsest-level mesh (down) contains

N, = 10486 vertices, N, = 17935 triangles and N, = 28418 edges.

Before discussing these method, we introduce the paradigm of multi-
threaded algebraic system solving. When one wants to solve the N x IV
algebraic system (3.3), its is in fact completely equivalent to solve one
of the preconditioned systems

APy = b

Px — y. (3.10)

P'Ax=P b or {
with P an invertible N x N matrix that is, hopefully, easy to invert
and which makes the product AP~ or AP~! quickly invertible. The
left (respectively right) application of P~ is called left-preconditioning
(res. right-preconditioning).

II1.2.1. LU decomposition. (LU) Notice that, should we choose
P = A in (3.10), then we obtain the desired solution. In a sense, A is
the best preconditioner that can be chosen when it is easy to invert. In
2d, when the number of degrees of freedom is not too high, its is still
possible to invert A directly using a parallel LU decomposition. This
is done here using the MUMPS library.! In 3d, the matrix assembly
sometimes fails due to a lack of memory. This behavior was expected:
it has already been observed in “large” 3d problems in, e.g. Nataf and
Tournier (2023).

I11.2.2. Non-nested geometric multigrid. (GMG) As the size
of the system increases, any direct factorisation method like (LU)
becomes slower.2 In such case, iterative methods are prefered. The
(flexible) GMRES algorithm? is chosen since we cannot always assure
that the stiffness matrix is symmetric.

A preconditioner P based on a Domain Decomposition Method
(DDM) is chosen. The simplest of such preconditioner is arguably the
Additive Schwarz Method (ASM)%5in which, loosely speaking, each
MPT core solves the problem on a subregion of the mesh (also called
a subdomain). The major difficulty is that the number of GMRES

5Dolean et al. (2015), Jolivet, Hecht,
et al. (2013), Jolivet, Roman, et
al. (2021), and Jolivet and Tournier
(2016)

IMUTltifrontal Massively Parallel sparse
direct Solver, see Amestoy, Buttari, et
al. (2019) and Amestoy, Duff, et al.
(2001).

2Computing the inverse of a N x N ma-
trix is done typically in O(N3) opera-
tions.

3Generalised Minimal RESidual (Saad
and Schultz 1986).

4Schwarz (1870)
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5see the books of Dolean et al. (2015,
ch. 1) and Mathew (2008, ch. 2) for
comprehensive treatment of the sub-
ject.

n practice, the two coarse levels are
constructed through adaptation of the
fine mesh shown in fig. 3.14.

2This last assertion has been verified up
to 64 cores. This remains rather low.

3For technical reasons, storing only the
decomposed mesh is not yet feasible.
In all case, the global mesh must be
created at some point and creating a
coarse mesh globally before splitting
it locally would lead to the cumber-
some question of the interface preci-
sion. The author knows a way to solve
this memory problem but did not im-
plement it yet (doing so in FreeFEM
would be difficult).

4see the review article of Xu and
Zikatanov (2017, sec. 10) for a com-
prehensive (and complete) introduc-
tion.
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iterations needed to converge to the solution increases with the number
of MPI cores. This is due to the information taking more and more
time to reach far subdomains (Bueler 2020). Introducing a so-called
coarse correction usually prevents this problem to arise. The idea is
to couple the problem at hand with a smaller subproblem which will
allow the information to be transmitted quicker. Two types of coarse
corrections have been used: one in 2d and another in 3d.

In 2d, a two-levels Geometric Multigrid method is utilised. Instead
of computing only one mesh 7"(Q") from the continuous domain Q",
three triangulations are computed. Roughly speaking, this corresponds
to building three meshes T"1:72:/3(Q") with hy > hy > hs.! Inter-
polations between two levels are handled by FreeFEM directly. These
meshes are plotted in fig. 3.15.

In broad outline, to solve the Navier-Stokes problem on the fine
mesh, the problem is first solved on the coarse mesh. After fine-tuning
the coarse solver, this is usually done in about 50 ASM iterations on
32 MPI cores. Then, using this coarse solution as a preconditioner, a
thiner one is computed on the middle mesh. Finally, using the middle
(level one) solution to precondition the fine system completes one GM-
RES iteration. With this method, the GMRES procedure converges
to machine precision in 6 4 2 iterations, regardless of the number of
MPI cores.?

I11.2.3. Fieldsplitting and algebraic multigrid. (FS&AMG) In
3d, storing three meshes would be quite a burden.? Therefore the
(GMG) method has been dropped out. Instead, we take advantage
of the block-nature of the stiffness matrix.

A Schur complement—based fieldsplit solver is used to incorporate
the divergence-free constraint. The pressure solver is a simple LU
factorisation method while the velocity block makes use of the Geo-
metric Algebraic Multigrid method (GAMG) implemented natively in
PETSc.# By no mean we can state that this solver is optimal. It has,
however, successfully provided the few three-dimensional simulations
that appear in the present work.

This puts an end to this rather technical section on implementation.
We did not want to dwell too much on the intricate details regarding
parallelisation as it is not the subject of the present work. However,
it seems important to have put in writing a thorough presentation of
the method in a document that shall be accessible afterward. We now
reward the patient reader with a plot of the 3d mesh corresponding to a
breaking wave simulation in fig. 3.16. A description of the simulations
that led to the meshes shown in figures 3.4, 3.14 and 3.16 shall be
given later in chapter 4.

IV. Code validation

In order to make sure that the method presented above works and
that no mistake has been made when implementing it, some test cases
are discussed in this section. As usual when carrying numerical studies,
we must ensure that:

1. The numerical solution computed using the code is identical,
up to some numerical error that should be estimated using the
mesh’s size h, to the analytical solution of the equations when it
exists.



Figure 3.16 — The 3d mesh during a breaking wave simulation. It contains N, = 4935 vertices and N, = 21838
tetrahedra. Looking at the periodic boundaries, it seems that numerical convergence has not been achieved yet.

2. When no analytical solution is available, the numerical solution
must at least converge to something as the mesh’s size decreases,
h — 0.

3. If many other numerical studies based on different schemes were
able to obtain similar results, the new method must do so too.

There does not exist any mathematical proof that our numerical scheme
is convergent.! Even more, the author could not find any mathematical
treatment of the ALE method described in sec. II. Therefore, testing
our method and its implementation shall be made through numerical
experiment and comparisons with analytical solutions and numerical
results obtained using a different, independent, code.

[V.1. Comparison to analytical solutions

Analytical solutions of the viscous water waves equations are scarce.
When the viscous effects are small (i.e. when the Reynolds number
is large), one could argue that the solution should remain close to the
inviscid solution. By chance, a solution to the Euler system (1.53) has
already been discussed: the linear wave solution? (1.25).

In figures 3.17 and 3.18 is shown a comparison between numerical
simulations carried out at Re = 10%, with both the implicit and the
Crank-Nicolson time-stepping schemes, and the first order (in €) solu-
tion up to 2 wave periods. The chosen amplitude is a = 0.01. A small
difference |1, — ||~ ~ 10~% between the numerical and theoretical
solutions exists. However, as noted in Dormy and Lacave (2024), with
such value of the amplitude a, a discrepancy of this intensity is not
surprising since second-order terms in Stokes’ solution are exactly of
order €2 = 10™*. We must also point out that both the Crank-Nicolson
and the implicit euler time-stepping schemes yield identical results.

At Re = 10°, the viscous dissipation remains negligible. Indeed,
a simple argument presented in §348 of Lamb (1932) shows that the

LA finite element scheme is called con-
vergent if as h — 0, the numerical so-
lution (w,, pj,) converges to the actual
solution (u,p) in some precise sense
that won’t be explicited here (see e.g.
Temam (1984)).

2Also corresponding the the first order
Stokes wave (Stokes 1847, 1880).
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t=0 — t=T — t=2T Stokes 15 order

1.011

Crank-Nicolson scheme
Y1.001

0.991
1.011

Implicit Euler scheme

Y1004

0.991

Figure 3.17 — Comparisons of Re = 10° Navier-Stokes simulations, obtained using the Crank-Nicolson scheme 1.2.2
and the the implicit Euler scheme 1.2.1, with the linear wave analytical solution (1.25) with amplitude a = 0.01,
at t =T and t = 2T, with T = 27/w the period. The vertical scale has been greatly exagerated compared to the
horizontal one.

—— Re = 10°, Crank-Nicolson <=+« Re=10° Implicit Buler === Stokes 1°¢ order

1.01 ¢
)
1.001
0.99 1
0 % ™ % 2T
xT

Figure 3.18 — Same as the above figure, but with different snapshots taken during the first period. The vertical
scale has been greatly exagerated compared to the horizontal one.

—-== Crank-Nicolson, envelope —-= Implicit Euler, envelope - Theoretical amplitude decay
—— Crank-Nicolson, Elevation at z = 0 —— Implicit Euler, elevation at x = 0 —— Theoretical elevation at x =0

1.01+

Y1004

0.99 1

Figure 3.19 — Numerical simulation of a first order Stokes wave decaying due to viscous effects. The theoretical
decay rate is derived in Lamb (1932), §348. The initial with amplitude is a = 0.01 again.
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viscous decay rate 7, of a water waves of first-oder in ¢ is

ke
T, = 2]{;

The clever idea that leads to this decay rate lies in a simple quan-
tification of the work that must be done to balance out the effects of
viscosity. As the rate 7, grows linearly with the Reynolds number,
it is not surprising that the simulation at Re = 10° can be compared
with the inviscid solution.

In order to compare our numerical results with the decay rate pre-
sented above, we should let a numerical simulation up to time ¢t ~ Re,
as in Chen et al. (1999). While this cannot be done at Re = 10°
within accessible time, we have done for Re = 102. This simulation
is presented in fig. 3.19. Once again, up to t = 35, the difference be-
tween the numerical and the analytical solution remains of order 2 so
that we cannot distinguish the numerical error from the analytical one.
However, at time ¢ ~ 35, numerical instabilities (not shown) appear in
the Crank-Nisolson simulation, leading to the discrepancy observed in
fig. 3.19.

We could also try to compare a numerical result with the cnoidal-
wave solution® of the Serre-Green and Naghdi system. This was done
in e.g. Dormy and Lacave (2024). However, once again this analytical
solution is not an exact solution of the Navier-Stokes system (1.54).
Therefore we cannot conclude about whether the observed error is of
numerical or analytical nature.?

IV.2. Numerical convergence

In order to ensure that our code converges as h — 0, without proof
that it does so to the mathematical solution, we increase gradually the
number of points (thus decreasing h) on the free surface in a breaking
wave simulation with initial datum (4.2) and amplitude a = 0.5. This
is done in figure 3.20. We readily see that the convergence is rather fast
(theoretically in O(h?), as proved in Pironneau (1989)). The Re = 10°
shows instabilities for N = 1000 and N = 2000, preventing these
simulations to be carried out up to the splash.

IV.3. Cross-validation

We have at our disposition the Euler-based code of Dormy and
Lacave (2024). In chapter 4, we shall investigate the convergence of
the Navier-Stokes solution to Euler’s solution by comparison of the
free surfaces. This is done in fig. 4.6 for instance, starting from the
same initial condition (4.2). Aside from the mathematical convergence
which will be discussed later, the fact that two different methods yield
comparable results shows that both should converge, as the discreti-
sation length is decreased, to the same continuous solution. Indeed,
it seems particularly improbable that two completely different numer-
ical methods, trying to solve the same problem, could independently
converge to something that is not the mathematical solution.

However, two methods yielding the same result remains not good
enough. In the litterature, there exists a benchmark (Helluy et al.
2005) that has been established by several authors using six different
numerical methods (based on both Euler’s equations or the Navier-
Stokes system). However, the results presented therein do not meet

Fig. Ny, Re Rem. Adv.

3.3
3.4 3500 10° PR Ell
3.7

3.14 5
315 3500 10 PR Ell
3.16 - 1048 MA  Lag

Table 3.1 — Numerical parameters
used for the different simulations
appearing in this chapter.

Fable 3.1 is the first example of sim-
ulation description table that can
be seen in the present work. There
shall be others in chapters 4 and
5. In such table, Ny, corresponds

to the number of points on the in-

terface, Re is the Reynolds num-
ber, Rem. stands for the remeshing
procedure chosen from the two de-
scribed in sec. III, and Adv. cor-
responds to the advection scheme
chosen (elliptic I1.3.1 or lagrangian

11.3.2). There is no need to explicit

the parallel scheme that has been

used: GMG for 2d simulations, and

FS&AMG in 3d. Also note that in

3d the number of faces on the free

surface is not constant throughout

the simulation. J

Isee e.g. Jiang and Bi (2017) for a re-

view.

2The conclusion of this section is that

we should have used the Implicit Eu-
ler scheme in every simulation shown
in the present thesis. However, some
old ones have been made with the CN
scheme and we did not have the time
to restart them with the current ver-
sion of the code.
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Figure 3.20 — Numerical convergence of the method, starting from the initial condition (4.2) with different values
of Reynolds’ number and different number of points N on the interface.
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today’s precision standards: none of their results could provide solu-
tions as close as the one presented in figure 4.6. The author is currently
establishing a new benchmark of this kind.

IV.4. Validating the 3d code

In order to assess that the three-dimensional version of the code
yields correct results, we propose to compare a 3d simulation with a
2d one, starting from an initial datum that does not depend on y, built
from the problem (4.1). The comparison between the two is visible in
figure 3.21. It is rather clear that numerical convergence has not been
achieved yet. However the difference between the two simulations is
only attributable to the lack of numerical convergence.
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4

Figure 3.21 — & — Breaking wave simulation at Re = 10* for times t = 1 (up), t = 2 (middle) and ¢ = 2.6 (down),
in 2d (orange line) and in 3d (blue surface). The initial condition shall be described in sec. 1.1.2; the initial potential
i, (4.1) is prescribed with an amplitude a = 0.5.
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Figure 3.21 - 8 — Continued, with times ¢t = 2.8 (up), t = 3 (middle) and t = 3.5 (down).






Chapter

Viscosity and the shape of breaking
Water Waves

“Might go somewhere sunny, sit on beach, look at ocean, collect
seashells. [...] Might run tests on the seashells.”

Mordin Solus, In: Mass Effect 3 (2012, dir. C. Hudson)

In the previous chapter, we discussed a numerical methods to solve (numerically) both the Navier-Stokes
system (1.54) with a Lagrangian advection scheme for the interface. Using the Euler—based code of Dormy
and Lacave (2024), comparing the solutions of both the viscous and inviscid systems as the Reynolds number
becomes large is thus achievable.

The present chapter focuses on the viscous dissipation at the free surface, in the case of a breaking wave
over a flat topography (on which the slip/Navier (1.14) or the no-slip/Dirichlet (1.15) condition is applied).
Numerical experiments shows that, as the Reynolds number is increased, the viscous solution converges to
the irrotational Euler solution, starting from an initially irrotational flow. This is due to the superficial,
Navier-type, boundary layer (BL) being sufficiently well-behaved.

The value of the Reynolds number is increased up to Re = 10%. This value has never been achieved
before in this context, to the author’s knowledge. However, this does not even corresponds the slightest to
a “real-world” plunging breaker. It corresponds to a water column of depth hy ~ 1[m]. The chosen initial
condition is thus a wave of amplitude a ~ 0.5 [m]. We are still very far from achieving numerical simulation
of an overhanging wave of acceptable size, for which Re = 107 — 10°.

Aside from the numerics, in the present chapter we also derive formally a link between the curvature of
the interface and the size of the boundary layer. This is done through an asymptotic expansion in the BL’s

1
size 6 = Re 2.

. Initial conditions for breaking waves

Ghis chapter is based on our study

. . . . Riqui d D 2024b).
To the author’s knowledge, there exists no analytical, irrotational,! iquier and Dormy ( ) J

solution of Euler’s free-surface equations (1.53) exhibiting wave break-

ing. Therefore, no comparison with analytical solution is tractable. 1502 axhibits breaking after a cortain
The Stokes first order initial datum, computed from (1.25) setting amplitude threshold his been passed.

t = 0, does not yield promising results (a simulation with this initial However the corresponding interface

condition is visible in fig. 4.2). Motivated by the idea of reproduc- does not seem to be physical.

ing the results of Baker, Meiron, et al. (1982), we provide a general

framework for constructing initially irrotational datum and apply it to

prescribed velocity potentials or normal velocities that enjoy particular

symmetries absent from Stokes’ solution (at a given order).

LGertsner’s vortical solution (Gerstner
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Figure 4.1 — Schematic represen-
tation of the initial domain in 2d
(d = 1). Periodic boundary condi-
tions are enforced in the horizontal
direction.

IRecall that in the non-dimensional
framework, hy = 1.

Fig. Ny, Re Rem. Adv.

4.2 3000 10° MA Ell

4.3 4000 106 PR Ell

44 3000 10° MA Ell

Table 4.1 — Numerical parame-
ters used for the simulations used
to compare the initial conditions.
Rem. stands for the remeshing pro-
cedure, and Adv. for the advection
scheme (see chapter 3).

118

[.1. Constructing the initial conditions

In the present chapter, we shall only consider the two-dimensional
case. As we are interested in comparing Navier-Stokes simulations
with irrotational Euler ones, the initial velocity u, must be derived
(numerically) from a potential ¢,. Given an initial interface ~,,, (which
shall always be the graph of a function), this is achieved by solving
(using the FEM) any of the two following Laplace problem,

Ap = 0  inQ0)
¢ = i only(0) (4.D)
0,0 = 0 on I’y
Ap = 0 in £2(0)
0,¢ = wuy-n onl;(0) (4.N)
0,0 = 0 on Iy,
where (4.D) (respectively (4.N)) shall be called the Dirichlet initial

problem (resp. Neumann initial problem). The functions t,;, and wu,
are prescribed and the initial velocity is the uy, = V¢,. We could also
prescribe the tangential velocity using the stream function instead.
The initial domain is depicted in figure 4.1. We use a flat bottom,
T, = {# = 0} throughout this chapter. We shall discuss non-trivial
bottom later in chapter 5.

Remark 4.1. The Neumann problem (4.N) is difficult to solve nu-
merically because the solution is defined up to a constant. This does
not cause any major issue in 2d but the 3d solver of FreeFEM yields
inconsistent results.

[.1.1. First order Stokes wave. Choosing the initial interface to be
a cosine wave of amplitude a = 0.5,

No(x) = 1+ acos(kx),

with k =1 (i.e. the wavelength/domain length is A = 27). Should we
provide the initial trace of the velocity potential

_aw(k) cosh (kno(QC)) . . _
Yy, = ’ Sinh(hy) sin(x) with w(k) = +/ gk tanh(khy),

we would get Stokes’ first order solution (1.25).

1.1.2. Symmetric initial conditions. A better-looking overhanging
wave can be obtained by making the initial condition presented above
symmetric with respect to the z = h axis, that is, choosing an initial
superficial velocity (or potential) whose magnitude does not depend
on z. The easiest way to do so is to take z = hj in (1.25), yielding
either

_aw(k) 1 )
Vin = "k tanh(khg) sin(x), (4.1)
or
A awlk) sin(kz) (1 ka . i >
= o) \/1—|—k2a2 sin? (kz) tanh(kh) costhe)

(4.2)
However, the corresponding initial potential ¢,, obtained through ei-
ther (4.D) or (4.N), cannot be computed analytically any more.
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Figure 4.2 — Breaking wave simulation at Re = 10° as a function of time. The dashed grey lines correspond to the
streamlines of the flow. The initial condition is Stokes’ first order solution, sec. 1.1.1, with amplitude € = 0.5.
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Figure 4.3 — & - Breaking wave simulation at Re = 10% as a function of time. The dashed grey lines correspond
to the streamlines of the flow. The initial condition is the symmetric one 1.1.2 with prescribed normal velocity u,, -1
(4.2) and amplitude € = 0.5.
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z
Figure 4.4 — Breaking wave simulation at Re = 10* as a function of time. The dashed grey lines correspond to the

streamlines of the flow. The initial condition is the symmetric one 1.1.2 with prescribed potential ¥, (4.1) and with
amplitude € = 0.5.
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F{emark 1. In figure 4.3, the ver-
tical coordinate is denoted by ¥y in-
stead of z. Indeed, some figures
in this chapter are reproduced from
Riquier and Dormy (2024b), where
different notations were used.
Remark 2. The camera symbol
& indicates that a video anima-
tion is available on the author’s per-
sonal web page. J

1Because in general, as already men-
tioned, if ¢;, is the harmonic function
satisfying ¢y, = 1, on I';(0), then we
do not have 9,¢;, = u;, - n. Both
quantities are not related through the
Dirichlet-to-Neumann operator (1.40)
(even up to a renormalisation).

[.2. Comparison between different initial conditions

Simulations have been carried out with the first-order Stokes solu-
tion, sec. [.1.1 whose numerical solution is visible in figure 4.2, and
with the prescribed symmetric initial data of sec. 1.1.2. For the latter,
the simulation with prescribed normal velocity u,, -1 (4.2) is shown in
figure 4.3 while the one with prescribed potential ¢, (4.1) is plotted in
4.4. The last two simulations are effectively similar but not identical.!
The last simulation has also been carried out in 3d, see fig. 3.21.

We readily observe the spurious behaviour of Stokes’ first order
solution at large amplitude (fig. 4.2). In this chapter, all simulations
shall be done using the prescribed initial normal velocity wu;, - 72 (4.2).

Figure 4.5 — & - 3d representation of the Re = 10° numerical solution whose initial velocity is computed by
prescribing the normal velocity wu;, - 1 (4.2).

2Video animations are also available on
the author’s personal web page.
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Using the classification of Galvin (1968), the resulting wave is a
plunging breaker. We note that the streamlines, shown in figs. 4.2, 4.4
and 4.3, initially wrap around the crests and the troughs of the wave.
We mention that, due to the impenetrability condition (1.10), none of
them can penetrate the water bed. If it seems to be the case in figs.
4.2 and 4.4, this is only because the vertical extent has been truncated
in order to fit the figure in only one page.

In order to understand better the interface evolution with time, we
propose a 3d representation in fig. 4.5.2 It is interesting to compare
this simulation with the one of Baker, Meiron, et al. (1982) (fig. 6 in
their paper). They are indeed very similar. However, it is not clear



whether their initial condition corresponds to (4.2) or not. Indeed, in
light of the rigorous treatment of Baker, Meiron, et al. (1982)’s vortex
method which has been carried out in Dormy and Lacave (2024), the
vortex sheet strength v does not correspond, when the upper fluid’s
density is set to zero, to the water’s mere tangential velocity at the
interface. A solenoidal extension of the velocity (or stream function)
in the “air” domain Q,(t)! must be computed to obtain the initial
vortex sheet. This can be carried out numerically but the result does
not correspond to Baker, Meiron, et al. (1982)’s initial condition in the
large amplitude regime.

I[I. The Re — +oc limit

Simulations have been carried out (table 4.2) with values of the
Reynolds number Re ranging from Re = 10% to Re = 105. They are
shown in fig. 4.6 and compared with the inviscid irrotational solution
of Euler’s system (1.53) computed with the dipole method of Dormy
and Lacave (2024).

Lusing the notations of chapter 1.

Eafeguard against self-
plagiarism. Some paragraphs
in the following sections are repro-
duced from Riquier and Dormy
(2024b) verbatim. J

# dofs at the start

# dofs at the end

Re N, Scheme # triangles (u,p) v # triangles (u,p) v

102 3000 CN 195,314 886,913 198,514 780,572 3,520,674 783,722
103 3500 CN 221,748 1,007,116 225,448 615,382 2,675,923 596,294
10* 3500 CN 221,368 1,005,406 225,068 510,266 2,305,447 513,966
10° 3500 CN 222,970 1,012,615 226,670 450,648 2,037,166 454,348
10 4000 IE 272,948 1,238,766 277,148 498,250 2,252,625 502,450

Table 4.2 — Description of the simulations that led to the results presented in this chapter. N is the number of
points on the interface. The column Scheme describes the time-stepping method that has been used (Crank-Nicolson
or Implicit Euler). The number of degrees of freedom (dofs) for both the Navier-Stokes (u,p) and the elliptic mesh
velocity v problems are presented, at both the beginning and the end of the simulation. The remeshing is done
through the PR method (sec. III.1.1) and the mesh velocity is computed solving the elliptic problem of sec. II1.3.1.

Before discussing the result presented in this figure, we would like
to spend some time discussing the chosen definition of the Reynolds
number.? Indeed, the flow associated with water waves is characterised
by a large variety of fiducial length scales L and velocities U. There-
fore, many Reynolds number can be defined and used when carrying
out the non-dimensional version of the free-surface Navier-Stokes sys-
tem. There is no right choice and we will not (and we cannot) argue
that ours is better than another. It seems, based on the author’s read-
ings, that the community prefer the deep-water scaling where L = ),
the wavelength (Chen et al. 1999; Deike, Popinet, et al. 2015; Di Gior-
gio et al. 2022; Tafrati 2009; Mostert et al. 2022). As the vast majority
of these studies include a topography,® this choice is questionable. We
chose to use directly the shallow water scaling instead. The conver-
sion between both Reynolds number is done through the shallowness
parameter,4

AV
Regy, = Tg = 4% Re = (27)% Re.

w

In all cases, the fiducial velocity is built upon the dispersion relation
(i.e. from w(k), eq. (1.25d)), which does not correspond to any typical

2We recall, in case it may be of use, that
our definition of the Reynolds number

is
LU  hy\/gh
Re = =Y _ oV gho

Vy Vy

3To our knowledge, no study proposed
a numerical treatment of the free-
surface Navier-Stokes system in an un-
bounded domain.

4The computational domain should
also be adapted accordingly.
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Re = 102

0 T 3n 21
2

X
Figure 4.6 — Comparison of breaking waves simulations carried out from the symmetric initial condition I.1.2 with
prescribed normal velocity u,, - 7 (4.2) and amplitude £ = 0.5, using different values of the Reynolds number. The
Re = +o0 is the Euler solution computed using the dipole method described in Dormy and Lacave (2024).
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value taken by the dimensional velocity field, in general. The arbitrari-
ness of this construction of Reynolds’ number should be remembered
by the reader. In particular, it means that investigating the bound-
ary layer structure, as shall be done anytime soon, won’t be possible
without the proper rescaling.!

With that said, we can come back to figure 4.6. The interface-
regularising effects of the viscous dissipation are clearly visible. The
overhanging region takes a round shape and falls faster at larger dissi-
pation (i.e. for decreasing Reynolds number). Perhaps more surpris-
ingly, the effects of dissipation are localised near the plunging jet. The
Euler interface appears to provide a limit solution towards which the
Navier—Stokes solution converges as the Reynolds number is increased.
Only a very small difference remains between the Euler solution and
the Navier-Stokes solution for Re = 10%. This minute difference may
be due to the finiteness of Re but also possibly to some amount of
numerical diffusion, as this extreme Reynolds number case is at the
edge of our numerical resolution (see sec III below).

In order to quantify the convergence of the finite-Reynolds-number
flow to the Euler solution, we must measure the differences between
the various interface positions. We cannot use a standard norm to do
that, since the interface is not a graph as soon as the wave overturns.
We therefore rely (as in Dormy and Lacave (2024)) on the bidirectional
Hausdorff distance between the curves. Let o : [0, L;] — R? and 3 :
[0, Ly] — R? two parametric curves. An intuitive “distance” between
the two is given by

Oy(e B) = max min |a(a) — B(b)|-

This map is however not a distance as it lacks the symmetric property.
The standard counter-example is shown in figure 4.7. However, it can
be symmetrised, yielding the Hausdorff distance,

by (v, B) = max {5y (cx, B). 5y (B ) |.

0.20

0.15

0.0

In figure 4.8, the distance between the inviscid irrotational Eu-
ler solution and the Navier-Stokes solutions, computed with different
values of the Reynolds number, is shown. The initial condition being
identical, the distance is an increasing function of time until the splash
happens (where both numerical methods stop). The time at which the
effect of viscosity becomes significant increases as the Reynolds num-
ber increases.

No finite-time wedge-like singularity seems to be developing for the
initial condition considered here, even in the case of the Euler solution.
This can be assessed by introducing the minimum curvature radius

IThe size of a boundary layer depends
on the physical velocity, not on the
group velocity (Batchelor 1967).

Figure 4.7 — Two planar curves
a and B such that dy(a,B) #

gH(ﬂva)'

Figure 4.8 — Hausdorff distance
0y between the Navier-Stokes (nu-
merical) solutions and Euler’s solu-
tion.
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Figure 4.9 — Minimum curvature
radius of the interface after the
breaking has happened, for all the
Navier-Stokes simulations and Eu-
ler’s one too.

Inamelly (B.3a) and the 2d version of

(B.1d), that is
AV (wuL> = w(V . ui) +u-Viw
= 7w(VL . 'u,) +u-Viw.

A minus sign slipped into Riquier and
Dormy (2024b, eq. 5.2) without noti-
fying the authors. It was not identified
in the proofs either.

2after making use of the weak incom-
pressibility condition
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R.(t). The curvature of the interface can be computed numerically,
with a maximum corresponding to the crest. The minimum curvature
radius R_(¢) is then the inverse of the maximum curvature.

0.0

2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

Figure 4.9 represents R, as a function of time. Each simulation
is interrupted when the interface self-intersects. Though R, tends to
zero for large enough Reynolds number, it remains strictly positive for
all time in all our simulations. No finite-time singularity is obtained
for this set-up. The low-Reynolds-number cases Re < 10* are charac-
terised by a larger R, (t). The fact that the curves are indistinguishable
in the figure for Re > 10%, and coincide with the Euler simulation, in-
dicate that the lack of finite-time singularity for this configuration is
not a consequence of viscosity and that the Bernoulli principle, accel-
erating the fluid near the tip of the wave (Pomeau and Le Berre 2012),
does not lead to a finite-time cusp for such initial data. Further ini-
tial conditions and domain geometries thus need to be investigated to
study the necessary conditions for the formation of such a singularity.

[II. Viscous dissipation near the free surface

To further characterise the difference between the Euler and Navier—
Stokes solutions, we now investigate the spatial distribution of viscous
dissipation. We readily obtain a local equation for the kinetic energy
multiplying the Navier-Stokes momentum equation (1.54a) by w and
making use of some usefull identities,!

[8t+u~V] (uz>—u-g+u-Vp=1-u-Au

2 Re
= —é u-Viw
= —é [V- (wuL> +w2].

Thus, the viscous dissipation is entirely contained in the vorticity’s
support. Before showing where the vorticity is located in the flow,
we would like to discuss the global kinetic energy. This can be done
readily by setting v = u (and ¢ = p) in the variational formulation of
the Navier-Stokes problem (3.1), yielding?

/Q@) “at”'v] (12) F oo S(u):S(u) —g-u| de =0,

The gravity term can be simplified making use of Reynolds’ transport
lemma 1.1 (for steady gravity fields g),

/u~gd:c:/ u~V<g~m)dm
Q(t) Q(t)



d
- 5% /T(w, ) u(t.5) [0,(2, )| ds,

with v(t,+) : T — I';(¢) a periodic parametrisation of the interface.
Notice that we have used g = —y above. Should we work with dimen-
sions, a factor g would be present in front of each term. The bottom
boundary term does not depend on time and is therefore chased off by
the time-derivative.

-1.5

2

x )

Figure 4.10 — Evolution of the vorticity w at Re = 10%. The color scheme has been truncated above and below to
guarantee the overall coherence.
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IShould we be interested in the surface
tension, an additional term, namelly

1 / .
— Ku- T,
Bo Jp, (1)

would lie on the right-hand side of
(4.3).

2The enstrophy &(u) is defined, de-
pending on the author, as

9 .
E(u) = / ‘Vu| or / w?.
Q(t) Q(t)

These two definitions are not always
equivalent. It depends on the bound-
ary conditions that are used.

3relating the convergence of Navier-
Stokes solution to Euler’s solution to
the control of the enstrophy, Kato

(1984). See also Kelliher (2007) for
equivalent formulations.

4Stokes (1850)

5Lundgren (1989)
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Finally, we obtain the following energy equation for the viscous
water wave system (1.54),
3570

li/ 2|, 1d /( K
2t \ g ) 2t \ L\ T

& (u)

The only difference with the inviscid case lies in the dissipation term?!
scaling as Re ' A surprising aspect of (4.3) is that the energy dissipa-
tion due to viscosity does not correspond to the enstrophy of the flow.?
This is due to the boundary conditions in water waves which do not
correspond to any of the usual ones used in fluid dynamics textbooks.
Even though the system at hand does not enter into the framework of
Kato’s theorem?, it seems reasonable to suppose that, if any Kato-like
criterion exists, it would involve the quantity &’(u) appearing in (4.3)
instead of the enstrophy &(u). However, as the former differs from
the latter through a boundary term, it may happen that this very
term is easy to control so that Kato’s original criterion would remain
unchanged.

Using eq. (4.3), the numerical dissipation can be estimated. When
the Reynolds number reaches 10, it becomes comparable to the vis-
cous dissipation. Therefore, energy considerations cannot be tracked
efficiently with this method. The ALE scheme (sec. II of chap. 3)
may be adapted to become second-order, through a higher-order ad-
vection scheme for the mesh for instance, in order to investigate the
dissipation at high Reynolds number. This might be part of a future
work but, to the author’s knowledge, a second-order ALE scheme has
not been found yet.

Coming back to the energy dissipation, figure 4.10 shows the vor-
ticity in a breaking wave at Re = 103. It is confined in a sheet entirely
lying in the vicinity of the free surface. Liu and Davie (1977) argued
that, due to the oscillatory nature of the flow, the vorticity distribution
shares similarities with the Stokes-type boundary layer? generated in
the vicinity of a back-and-forth moving boundary. However, as we
shall now show, the origin of this vorticity is different.

[TI.1. Vorticity generation at fluid interfaces

Lundgren and Koumoutsakos (1999) proposed an interesting in-
terpretation about the origin of the vorticity sheet observed in figure
4.10 (extending the work of Longuet-Higgins 1992). We hereby extend
their reasoning to the case of a single-fluid interface. The stress-free
condition on I',(¢) (1.54¢c), taken in the tangential direction 7, can be
rephrased as

0=7-S(u)-n on T';(t)
& w=-27F-Vu-i=-20(u-n)+2(u-7)r onT,(t), (44a)
i.e. vorticity has two different origins on the free surface: a contri-
bution from the exiting streamlines and another one from both the

curvature and the tangential velocity (Longuet-Higgins 1992). A sim-
ilar relation holds in 3d.> Coming back to fig. 4.10, we notice that



the strongest vorticity region (in ) is associated with an increas-
ing curvature, together with a strong superficial current (not shown),
yielding a high value of the second term in (4.4a).

Remark 4.2. The same argument applies to the slip/Navier boundary

condition (1.54e) but the impenetrability condition (1.54d) yields
w:2<u~‘7‘)l-@ on I';.

In the present case, the curvature of the topography vanishes every-

where so that no vorticity is generated on the bed. However, this does

not hold in general and Navier-type boundary layer may appear.!

The relation (4.4a), alone, sheds light on the vorticity generation
mechanism at hand. However, we can go further. Doing identical
computations, we can also rewrite the normal component of the stress-
free condition (1.54c) using the curvature, yielding

Pt o (0w 7) +r(u-)) =0

An eventual surface tension term may also appear, should Bo < +oo.
Another enlightening relation can be obtained rapidly (lemma 4.3 be-
low, fig. 77).2

on T (t). (4.4b)

Lemma 4.3 (Lundgren and Koumoutsakos, 1999). There holds

d _d 1
—/ u-T— — u-T—i—f/ 0w =0,
dt Jr, ) dt Jr, Re Jp,ur, )

with the normal vectors defined as in fig. 1.0. O

Proof. 1t is a direct consequence of both Stokes’ theorem,

/ w= / u-T,
Q(t) o0(t)

and of the vorticity equation which, in 2d, yields readily

i/ w= i 0, w
dt Jo, Re Jyqu "

One just need to be careful with the orientations of normal vectors
(and hence of the associated tangent ones t00). O

Remark 4.4. In the integral over the interface I',(¢), we can replace
u - T by the vortex sheet strength v, (Dormy and Lacave 2024).3:4
The result is then closer to the one of Lundgren and Koumoutsakos
(1999). In the same manner, we can also replace w - 7 by the bed’s
vortex sheet strength 7, in the second integral appearing in lemma 4.3.

Lemma 4.3 provides an interesting interpretation of the vorticity
sheet appearing in fig. 4.10: it corresponds to the free-surface vortex
sheet ~; diffusing in the bulk due to viscous effects. In other words,
the viscosity introduces a defect in the conservation law for «; that is
compensated by the bulk vorticity, so that we have formally

d n d / 0
En Vi T w ="
de interface dt fluid

IWe shall define the nomenclature re-
garding types of boundary layer soon,
in secs. II1.3.1 and II1.3.2.

2In fact, Lundgren and Koumoutsakos

(1999) obtained this result in the
case of a two-fluids interface. Their
proof involves manipulations of Eu-
ler’s equation and (4.4) that are dif-
ficult to justify rigorously. Our ap-
proach seems somewhat simpler.

3Because, should we extend u by u,, in
the air domain €2, as in Dormy and
Lacave (2024), then

/ u,-7=0.
JT(t)

4With wu, the solenoidal extension of
w in the air domain Q,(¢) obtained
through a continuous extension of the
stream function, we recall that the su-
perficial vortex sheet strength is de-
fined as

('Yi‘?)(tv s) = u(t77(t7 S))

— ua(t,'y(t, s))
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Figure 4.11 - Vorticity cuts at
t = 2.9 along the normal direc-
tion at y = 1, with the arclength
s rescaled by Re% in order to high-
light the scaling.

107!

—1/2

ye<Re

1072

10 10° 10* 10° 10°
Re

Figure 4.12 — Scaling of the vor-
ticity sheet size £ with the Reynolds

number at t = 2.9.

IThis can be seen as a conjecture.

2We won’t discuss convergence in func-
tion spaces involving time for the sake
of simplicity.
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A similar interpretation holds for the bed’s sheet too. However, in the
absence of curvature, eq. (4.4a) yields the stronger statement that -,
remains localised on the bottom boundary.

[11.2. The free—surface boundary layer

In order to further characterise the vorticity sheet visible in fig.
4.10, we propose a magnification centered on the overturning region at
t = 2.9 for all values of Reynolds’ number in fig. 4.13. The sheet’s size
seems to decrease with the viscosity. This observation can be made
precise by plotting the vorticity strength along the black lines visible
in fig. 4.13. This is shown in figure 4.11.

= Re =107
751\ —— Re=10°
—— Re=10"
—W5.0 Re = 10°
—— Re=10°
2.5
0.0 e ————
0 1 2 5 6 7

: 4
s Rel/?

In fig. 4.11, we see readily that the sheet in the Re = 10° simulation
is not fully resolved. Indeed, it is spread over one to three triangles.
We also mention that, since P? basis functions have been used for the
velocity u, interpolation always happens when numerically computing
w since piecewise linear elements with degrees of freedom lying on both
the edges and the vertices of a triangle are not available in FreeFEM.
We have chosen discontinuous P} elements instead (see chap. 3).
We also notice that the Re = 102 result differ significantly from the
others. This is due to its normal cut going in a different direction that
the others. Indeed, the high (non-physical) value of the viscosity in
this simulation yields a very different shape of the overturning region,
looking like a phrygian cap.

Looking at both figures 4.11 and 4.12, we see that the size of the
sheet scales as Re 2. Therefore, it is in fact a boundary layer. As the
vorticity remains uniformly bounded with the Reynolds number, this
boundary layer is of Navier type (Iftimie and Sueur 2011). Since it
happens to be well-mannered, meaning that is remains gently localised
in the vicinity of the interface, we may conclude about the following
(pointwise in time) convergence of the Navier-Stokes solution to Euler’s
irrotational solution for this particular initial condition,!

W(t, ") —— 0
Re—+o0

in L2(Q(t))

u(t,+) PO Vog(t-)

in Hf, (Q1)),

with ¢ the velocity potential solution of Euler’s irrotational prob-
lem with initial data ¢,.> Regarding the interface, it is difficult to
quantify the convergence without entering the spurious debate about
reparametrisation. However, as already discussed in sec. II, the con-
vergence can be stated in a space endowed with Hausdorff’s distance.

We stress that a region of positive-valued vorticity is visible in fig.
4.13f. In fact, taking a closer look at figure 4.10, we see that positive
vorticity appears first below the crest of the wave but quickly dissipates



(a) Re = 102 (b) Re = 103

4.425
T

Figure 4.13 — (a—¢) The vorticity w close to the wave’s crest at time ¢ = 2.9 for different values of Reynolds’ number.
(f) A closer look at the tip of the wave when Re = 10°. The color scheme has been truncated above and below to
guarantee the overall coherence.
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away. In the meantime, as breaking occurs, the strong surface drift
generates much more vorticity (owing to eq. (4.4a)) of opposite sign,
therefore shadowing the positive region.

Interestingly the vorticity sheet becomes comparable in size with
the minimum curvature radius R, near Re = 10*, i.e. when the curva-
ture radius, as a function of the Reynolds number, reaches its minimum
(figure 4.9). This observation will lead us to find a link between the
curvature radius and the boundary layer thickness in sec. IV.

As a final remark before moving on, we mention that we are not in
a case in which the theorem of Masmoudi and Rousset (2017) applies,
stating that the convergence of the viscous solution to the inviscid one
happens as Re — +o0 for small (in some norm), non-breaking, waves
evolving in deep waters (i.e. without a bottom topography).

[II1.3. What about no-slip/Dirichlet conditions?

Starting from the same initial condition, we have carried out the
exact same simulation with the Navier condition replaced by the no-
slip condition on the bed. The resulting wave is visible in fig. 4.14.

Re = 10* no-slip Re = 10* Navier ~—— Re = 10° no-slip ~ ----- Re = 10° Navier ~—— Euler
1.59
t =2.60
1.35
1.01
y 130
0.5
1.25
0.0 1.20

390 395 400 405 4.10

H0.95
< F0.90
0.85
‘ : : 0.80
0.0 0 7 a 0 o 5.0 5.1 5.2
x

Figure 4.14 — Imposing the no-slip/Dirichlet and the slip/Navier boundary condition on the bed does not change
the shape of the free surface.

One sees readily that, at each Reynolds number, the difference
between the two interfaces remains small. We cannot conclude whether
this gap is of physical or numerical nature.

However, imposing the no-slip/Dirichlet condition on the bottom
yields a boundary layer of Dirichlet type (not shown), i.e. the vorticity

1 by
is confined, once again, in a sheet of size Re 2 but now scales as Re?.
Therefore, we can only expect convergence of the following type (as in

Lwhere we set Kelliher 2007, 2008),1
2
L2(a(n) = [£2(2)] - w(t, ) ——— 0 in H-1(Q()
Re—+o0
. . 1 2
u(t, ) ——— Vog(t ) in L2(Q(t)).
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In fact, we can even say more about the vorticity. Indeed, we

can argue that it converges in H' (Q(t)>*, the topological dual of

H! (Q(t)), to the bottom vortex sheet 7,0, . To see this, we intro-
duce the Green function G(x,y) in the cylinder T x R. Let ¢ the
stream function associated with w.! Dormy and Lacave (2024) showed
that 1 can be extended continuously to the entire cylinder T x R using
the vortex sheets «, and +, already introduced, leading to the repre-
sentation formula

oltx)= | wlult,-)](y) Glz.y)dy, (4.7)
TxR

where the distribution w[u] is the total vorticity? defined as
wlu] = (V x u) + 5 [uldp, ) + 2 [uldr,

with the dependency of ; and ~, in © made explicit. Since the exten-
sion of ¢ to the entire domain T x R is harmonic in both Q,(¢) and

Q,, the first term’s support lies in Q(¢) only.

I11.3.1. Navier—type boundary layer. By this terminology, we
mean the vorticity sheet appearing in the vicinity of a boundary sup-
plemented with the slip/Navier boundary condition (1.14). The rep-
resentation formula (4.7) for the stream function quickly yields

u(t.) = | luly) VaG(r.y)dy
~ [ =[Vor] Vi) dy
TxR
+ [ wlu- VoW Vit@y .
TxR

with V¢ the irrotational solution of Euler’s system. On the bottom
boundary T'y, both u-n and V¢ -n vanish. Regarding the tangential
velocity, we can expect (Iftimie and Sueur 2011) a difference <u —

Vo E> -7 of order Refé7 yielding the convergence of the Navier-Stokes
bed’s vortex sheet strength ~, to Euler’s one.

I11.3.2. Dirichlet—type boundary layer. Imposing the no-slip/
Dirichlet condition on I'y yields a boundary layer in which the vor-
ticity formally scales as

1 1
w=Rez2d (tﬂs,ReE n) ,

with & of order O(1) as Re — 400, and with (s,n) the Frénet frame
(see the following discussion, sec. IV). At the same time, since u = 0 on
I'y, the bed’s vortex sheet strength -y, vanishes identically everywhere,
so that the representation formula (4.7) yields

ult,z) = / el ) VG ) dy + / 2 (y)VEG (2, y) dS(y).

i(?)

Thus, if convergence of the viscous solution to the inviscid irrotational
one happens as Re — 400, the former’s vorticity w must become the
latter’s bed vortex sheet «,. This explains the pointwise divergence of
the vorticity and its convergence in H (T x R).

Li.e. we have

u=V'y) andso —Ayp=uw.

2which is conserved in light of Lund-
gren and Koumoutsakos’ result 4.3.

Wortex sheets and when to

use them. As we were discussing
lemma 4.3, we mentioned that w -7+
could be replaced by either v, (or
v, depending on the considered in-
tegral). In fact the vortex sheet
strengths ~, and ~, appear as soon
as one is interested in a continuous
extension of the stream function )
in the entire cylinder T x R.
In a sense, this continuous exten-
sion correspond to the very differ-
ence between Dormy and Lacave
(2024)’s method and the Boundary
Integral Method (BIM) where the
representation formula for 1 is

it @) - /Q L WG )y
0

+ G(z,y)(u-7)(y)dS(y)
Josi(t)

+[ 0,6 vy dse).
o0 (¢)

(see e.g. Beer 2001; Bonnet 1995,
for introductions to the BIM, even
though the titles of these books mis-
leads the reader into thinking that
they are about the Boundary El-
ement Method (BEM)) The diffi-
culty with the above formula is that
1 appears in both the left- and
right-hand sides. Introducing the
solenoidal field w, in the air do-
main €, (t) bypasses this issue, at
the cost of replacing u - T with ~;

or . J
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Figure 4.15 — The Frénet frame in
2d. Geometrical interpretations of
both quantities h and k.

1i.e. the smallest free-surface curvature
radius reaches a minimum value with

respect to the Reynolds number.

2Indeed, denoting u,, = u - 71, we see
easily that

at(‘as’ﬂ) O 00,y

R

Oy N N
“10.7] - Oy {unn + UT]
= gsz‘ : [(SSun)ﬁ —u, KT

+ (0,v)T + UH’I"\L}

=—u,k+ 0,v < 0,

since the arc-length parametrisation is
defined by the criterion |0,vy| = 1. We
have used many times the fact that

0,7 = Kn,

by definition of the curvature.
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Remark 4.5. The considerations of this section only apply in 2d. In
the 3d case, the vortex stretching term in the vorticity equation must
be handled carefully in order to obtain a result similar to lemma 4.3
(Lundgren and Koumoutsakos (1999) have done it in their appendix).

IV. Regularisation of free surfaces due to vis-
cosity

In sec. III.2, we observed that the strongest free-surface curva-
ture, seen as a function of both time and Reynolds’ number, reaches a
maximum' around Re ~ 10%, that is when the (Navier-type) bound-
ary layer size becomes comparable to the radius of curvature. In the
present section, we propose a general theory for interface regularisa-
tion due to viscosity, via parameter asymptotic expansion in terms of
the boundary layer size

1 h
o= § = —% in the dimensional World> ,
vRe ( vRe

and a basic scaling argument.

IV.1. Time evolution of the curvature

By regularisation, we mean that the curvature decreases due to vis-
cous effects. In order to show this, we should derive an equation for the
curvature evolution. This is done in Longuet-Higgins (1953, sec. 6).
We propose to re-derive his equation in two different manners: using
his d la physicist approach and in a, less geometrical, more rigorous
fashion.

IV.1.1. The Frénet frame. We start by rewriting some quantities
in a curvilinear frame attached to the free-surface. We recall from
chapter 2 that, should (¢, s) denote a time-varying parametrisation
of the free surface I';(¢), we have

Ov(t,s) = (k) - w(t,y(E5)) )alt,s) + vt )7t s),  (48)

where v is an arbitrary slip vorticity. We assume that initially = is
parametrised using the arc-length. We preserve this parametrisation
by choosing v such that?

o,u(t, s) = k(t,s) (ﬁ(t, s) -u(t,'y(t, 5)))

We remark that v is defined up to a constant. Indeed, if all free-surface
elements were sliding at the same constant velocity, this would not have
any influence on the free-surface parametrisation. This peculiar choice
of v has already been mentioned in lemma 2.13.

We work in the time-dependent Frénet frame (s, n) attached to the
free surface (figure 4.15), where n corresponds to the coordinate in the
normal direction (with unit velocity). The metric is implicitly defined
by the relation

2
dm®dw:dn®dn+<1—fin) ds ® ds = dn ® dn + h%ds ® ds.

The term h is called the shape factor. It can be viewed as the ratio
between the distance of a point to the center of curvature and the



radius of curvature (fig. 4.15). This system possesses a coordinate sin-
gularity at n = k! = R, the curvature radius. This won’t be an issue
afterward as our analysis is concerned with boundary layers that are
smaller that ?,. We mention that the curvature sign is chosen positive
around waves’ crests and negative around troughs (i.e. positive when
convex inward).

For 0 < n < k(t,s)~!, we can decompose the velocity u along the
(7,n) frame as

u(t,x) = u,(t,s,n)nt,s) +u.(t s,n)7(t,s).

Following Massey and Clayton (1965) or Longuet-Higgins (1953), we
can rewrite the Navier-Stokes system in the Frénet frame. This shall
be done later in sec. V in order to understand the stability of boundary
layers. However, for the time being, the divergence-free condition is
enough. It becomes®

KLt + dt, s + ds)

Figure 4.16 — Geometrical deriva-
tion of the curvature evolution
equation: the frame at time ¢ and

V.-u=0u,+ 8n<hun> =0.

The relation between the stream function 1 and the velocity w is thus?

t 4+ dt.
U, = —@ﬂ/f and Uy = h7183¢~ IDifferential operators expressed in any
general orthogonal curvilinear system
The vorticity is then of coordinates can be found in ap-
pendix B.
1
w=Vt.u= E <8n (hu_,_) — 8Sun) 2We can also define the velocity poten-
1 tial as
_ —1 _ _
=— (8n<h8n1/z) —a,(h agw)) = Ay w, = h10,0

‘ Uy = 8n¢'

IV.1.2. Geometrical derivation. We kindly ask the reader to forget about rigour until the next section.
We now describe the method used by Longuet-Higgins (1953) in order to derive his curvature evolution
equation. In order to follow the argument easily, a schematic representation of the configuration is provided
in fig. 4.16.

Let us consider two points A = ~(t,s) and B = ~(t, s + ds) lying on the boundary I';(¢) and separated
by an “infinitesimal” arc-length ds at time ¢. At time ¢t + dt, they become A" = ~(t + dt,s) and B’ =
~(t + dt, s+ ds).

From the evolution equation (4.8) of the parametrisation, we know that

A —A
B'—B

v(t,s)dt7(t,s) + wu,(t,s,0)dtn(t,s) +  O(dt?)
v(t,s +ds)dtT(t,s +ds) + wu,(t,s+ds,0)dtn(t,s+ds) + O(dt?).

From the definition of the curvature, we see rather easily that

T(t,s+ds) = T(s,t) + k(t,s)ds-n(t,s) + O(ds?)
n(t,s+ds) = n(t,s) — k(t,s)ds-7(t,s) + O(ds?),
so that
B'—B = dt {v—i—@sv-ds—nun -ds}(t,s,n: 0)-7(t,s)

+ dt {un +04u,, - ds+ kv - ds} (t,s,n=0)-n(t,s) + O(ds?) + O(dt?).
Hence the vector going from A to B changes with time as

B — A =B— A+dsdt [581) - nun} F 4 dsdt [ﬁsun + m}} A+ O(ds?) + O(dt?), (4.9)

ds-T
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all quantities being evaluated at ¢, s and n = 0 if needed. For small dt, it is possible to assume that the vector
B— A remains of constant length (omitting O(ds dt+ds?) terms). We can then write B'— A’ = ds-§(s, t+dt).
Let Y(t,s)dt be the angle by which the coordinate system at s is rotated between times ¢ and ¢ + dt.
We can then write
T(t+dt,s) = T(t,s) + Y(t,s)dt - n(t,s) + O(dt?).

Inserted in relation (4.9), this gives the relations

T = 0,u, + kv, (4.10a)
0 =0,v— Kku,, (once again). (4.10b)

Let AB be the angle between the normals n(t,s) and n(t, s + ds), AA’ be the angle between the normals
n(t,s) and n(t + dt, s), etc. We have then

AB = k(t,s)ds AA = Y(t,s)dt
AB = {/ﬁ—i—@tndt}ds BB = {T#—@STdS]dt.

From AA’ + A’B’ = AB’ = AB = BB’ and «q. (4.10), we get the main curvature evolution relation

Ok = 0, = 0, u,, + vk — Ku, (at n = 0). (4.11)

s8N

[V.1.3. Another derivation. We can obtain the same evolution equation using a more direct approach.
We assume that the interface arc-length parametrisation 4 is at least three time differentiable (even to the
sense of distributions). We use the tangential velocity v defined in (4.8) so that the condition |9,y = 1
holds at all time ¢ > 0. From the definition of the curvature, we see readily that

Ok = (0,0,7) - A+ 0,7 - O,

A rapid computation yields

0,0,7 = 0,(0,0,7)
=9, [(asun) A+, (0,7) + (9,0) 7 + v(@j‘)]
=0, [(8Sun) i —u, w7 + (0,0) 7 + mﬁ,}
= (Oysun )P — (O5u,, )57 + K(0,0) A + v(0yk )R — VK7,

so that finally (recalling that u,x = 0,v)
(0,0,7) - A = Dy gu,, — u, 52 + v0,
which may give the reader a light feeling of deja vu. To handle the second term, we notice that
~ ~ J_ ~ ~
on = ((")ﬂ') = —(8sun>’r — UKT,

meaning that
0,7-0n=rn-0n=0.

We therefore recover Longuet-Higgins’ relation (4.11) in a more straightforward manner, without resorting
to some dark magic of any kind. Deriving an equivalent relation in the case of a general parametrisation
is left as an exercise to the motivated reader. Ambrose and Masmoudi (2009a) also obtained an evolution
equation for the mean curvature in 3d using the first and second fundamental forms.
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IV.2. Asymptotic expansion and scaling

We observed that, in the case of water waves, the vorticity extends to a distance § = Refé from the
interface. This vorticity boundary layer is created by the moving interface through (4.4a). We make use of
the following decomposition (similar to Helmholtz (1858)’s decomposition with the potential being Euler’s
solution) for the velocity,

u = V¢E‘ + VLlpRe)

i.e. the difference between Euler’s irrotational solution and the Navier-Stokes solution is written as V4t 4g,.
This is well-justified in fixed domains but since the fluid domain €(¢) depends on Re in itself, one must
use extra care. Using either the Lagrangian framework or a continuous extension in the entire space (d la
Dormy and Lacave (2024)) solves this issue. We propose to decompose 1)y, as

Yre(t, 8,m) = Py (t, 8,n) + 5y (¢, 5,n) + 62y (t, 5,n) + O(53).

Since the typical variation scale along the normal direction is §, we can further rewrite

ch(tvsan) = ch (tvsv g) )

so that each application of the normal derivative reduces the order of the expansion in § by one. Having in
mind the numerical results of sec. II1.2 (and boundary layer theory in general), we see that both ), and ),
are identically zero (in order to have a velocity of order O(§) and a vorticity O(1) as 6 — 0). Therefore

1 -2\ _ 52 3
Ype = ﬁ¢2+0(Re 2) = 6%, + 0(6°).
This condition can then be introduced in the curvature evolution equation (4.11), yielding

Ok = 0y + K2(0,05) — h ™1 (0,05)(0k)
+ 0,5 (W10, 0Re ) — 0(0,8) + K20 (O,0p,)
& O(k7t~ ') = potential
+0(0?) + O(k262) + O(k25?),

(4.12)

where the scaling v = O(k6?) follows from the link (4.10b) between v and u,,. We recall that h = 1 forn =0
(i.e. on the free surface) and we have denoted by 7 the typical regularising time. Rearranging the terms in
the above equation, we get

7 ~ O(kRe) + O(k 'Re),

the former (respectively the latter) being the smallest on large scales (resp. small scales). Beware: we are
interested in the smallest of the two terms.

For waves of (relatively) small amplitudes and large wavelengths x < 1, as in the open ocean. In this
case we have T scales as Re, in accordance with the usual decay rate used in sec. IV of chapter 3 (Lamb
1932; Liu and Davie 1977). On the other hand, for highly curved regions (in the simulations presented in
this chapter, s reaches values ~ 102 — 10%), the second and third terms in (4.12) yield regularising effects
happening in the course of the numerical experiment should k™ 'Re ~ 1 — 10, in accordance with our
observations at Re = 10? and Re = 103. For higher values of Reynolds’ number the numerical experiment
is not long enough for the viscous effects to become important.

From the analysis above, we have understood the observations that were made when discussing the figure
4.9. The curvature evolution equation (4.11) seems like a natural candidate to investigate the link between
viscosity and free surfaces in a more rigorous manner. It may even be appropriate in order to study a
possible finite-time cusp-like singularity appearing in the free-surface Euler equation.

Remark 4.6. The analysis presented above generally applies to any
interface involving a 2d viscous fluid. It is not restricted to the case of
water waves.
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[rrotationality of Water Waves and
topography

“Science compels us to explode the sun!”

Pye, In: OQuter Wilds (2019, dir. A. Beachum and L. Verneau)

In the previous chapter, we have used numerical simulations to investigate the boundary layer appearing
below the free-surface and concluded that, up to the splash, it remains sufficiently well-mannered not to
perturb the bulk of the flow, which therefore remains irrotational. In his celebrated 1953 work, Longuet-
Higgins noticed that a lack of irrotationality could come not only from the free surface, but from the water
bed too:

“[Q]uite near the bottom the fluid is observed to be in motion with velocities comparable
to that of the interior of the fluid, so that in general there must be a strong velocity gradient
near the bottom. This implies that there is in fact strong vorticity in the neighbourhood of the
bottom [...]. In an oscillating motion this vorticity will be of alternating sign; and the question
then presents itself: will any of the vorticity spread into the interior of the fluid, or will it remain
in a neighbourhood of the boundary?” (Longuet-Higgins 1953)

In the present chapter, we address this question. To do so we supply the no—slip/Dirichlet boundary condition
(1.15) on the fluid’s bottom boundary I';. We have seen in sec. IIL.3 of chapter 4 that in the case of a
breaking wave over flat bottom, this does not change our observations on short time scales. Therefore, we
now use a non—flat topography, irregular at first and then smooth. We shall see that the associated boundary
layer is unstable, leading to pairs of vortices being effectively shed in the bulk flow. This boundary layer
separation prevents the convergence of the Navier-Stokes solution to Euler’s irrotational one as the viscosity
vanishes.
|

[. Motivation: why should water waves be
irrotational?

Hhis chapter is based on our study

iqui d D 2024a).
As we were motivating the Water Waves system (1.43), the key Riquier and Dormy (2024a) J

hypothesis was the irrotationality of the flow (H11), leading us to the
introduction of a velocity potential ¢ whose value on the free-surface
1 is the canonical variable used in the Zakharov—Craig and Sulem
formulation of the problem.

Numerous reduced models typically used to study oceanic surface
waves correspond in fact to asymptotic regimes of this set of equations.
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Lj.e. when the shallowness pu = hg /) is
small, p <« 1.

2whose well-posedness follows from the
standard theory of quasilinear sym-
metrisable hyperbolic systems (Alin-
hac and Gérard 2007; Benzoni-Gavage
and Serre 2007; Métivier 2008; Tay-
lor 2011). Their justification as
O(u?) asymptotic regimes of the Wa-
ter Waves equations (1.43) is done in
Lannes (2013b, prop. 5.2) or Duchéne
(2021, thm. 5.8).

3Serre (1953), Green and Naghdi

(1976). The well-posedness of this
system has been established by e.g.
Li (2006), Alvarez-Samaniego and
Lannes (2009) or Duchéne and Israwi
(2018). In these references, it is also
shown that the Green-Naghdi system
corresponds to a O(p*) asymptotic
regime of (1.43).

4Boussinesq (1872)

5Boussinesq (1877), Korteweg and de

Vries (1895). The mathematical anal-
ysis of this equations, and its justi-
fication as a O(u?) approximation of
the Water Waves system (up to a cer-
tain time that might depend on p) has
been proved by e.g. Craig (1985) or
Kano and Nishida (1986).

6Whitham (1967)

7Schrédinger (1926), Davey and Stew-
artson (1974), whose mathematical
justification has been established in
e.g. Craig, Sulem, and Sulem (1992)
and Craig, Schanz, et al. (1997) re-
spectively.  The former is in fact
also linked to the KdV equation (5.2)
(Schneider 1998) and thus also appear
in shallow water.

Navier—Stokes (1.54)
with irrotational initial datum V¢
!

|Re = +00
v

Water Waves (1.43)
(irrotational Euler)

pn<<1

Reduced models

Figure 5.1 — The sequence of
asymptotics that lead to reduced
shallow water models. The first
limit is far from completely under-
stood.
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A comprehensive discussion about shallow water asymptotics' can be
found in Lannes (2020) or Duchéne (2021). To provide a complete self-
contained introduction to the problem at hand, we hereby mention a
few of these regimes and write them using the notations of chapter 1.

1. The Shallow Water equations (Barré de Saint-Venant 1871),>

om + V-(hi) =0 (5.1)
ou + eu-Vui+gVn = 0,

commonly used in physics, written here on a flat topography
with h = 1+en. The formal derivation of these equations do not
put emphasis on the presumed irrotationality of the flow, even
though it is a direct consequence of the columnar motion.

2. The Serre-Green and Naghdi® system,

o + V- (hii) =0
(idguq + uTH)0yii + cii- Vi+gVn+peQ(h,ii) = 0,

with T[h] a matrix-like operator depending non-linearly on h,
and Q(h, %) a nonlinear term (not explicitly written). Omitting
the latter yields Boussinesq’s system?. Notice that we recover

the Shallow Water equations (5.1) by setting u = 0.

3. The Korteweg and de Vries equation,’
3 1
Ou+ §u3xu + gﬁwmu =0, (5.2)

and their generalisation over non-flat topographies by Johnson
(1973a,b), Shuto (1974) or Israwi (2010). Another worth men-
tioning scalar equation is Whitham’s one,® relevant when one is
interested in wave breaking (in the sense of a shock).

Remark 5.1. We choose not to discuss the deep water regimes
(e.g. the nonlinear Schrodinger equation or the Davey and Stewartson
model”) as their validity is not affected by the results of the present
chapter.

Remark 5.2. We shall discuss the relevance of shallow water models
incorporating the vorticity in the conclusion of the present chapter.

In chapter 4, we have seen that the free surface contributes little
to the vorticity generation as long as no splash occurs, so that the flow
should remain irrotational there. However, the Prandtl-like boundary
layer lying in the vicinity of the bed might not be easy to neglect, even
at high Reynolds number, because separation may happen. A funda-
mental difficulty is that such phenomenon is completely overlooked by
the models mentioned above, which are derived following the proce-
dure shown in figure 5.1. However the first limit presented in fig. 5.1
is far from trivial.

Since the results of Swann (1971) and Chemin (1996) about the
Re — +oo limit in the entire space (in 3d and 2d respectively), it
is known that all the difficulties with the vanishing viscosity limits
stem from the boundaries (this can also be seen as a consequence of
Kato (1984)’s theorem). We can argue that the free-slip/Navier con-
dition should not cause any major issue, even for rough boundaries



(Gérard-Varet, Lacave, et al. 2018; Masmoudi and Rousset 2012), but
no mathematical proof of this assertion seems currently available (the
only work on the vanishing viscosity limit for free-surface flows that
the author is aware of being the one of Masmoudi and Rousset (2017)
in which there is no bottom topography). The case of no-slip/Dirichlet
boundary condition is once again more tedious (Masmoudi 2007), even
though this condition seems more physically relevant. The fundamen-
tal issue is that, on uneven topographies, the boundary layer may
become unstable and separate,! thus preventing the viscous solution
to converge to Euler’s irrotational one.?

Coming back to the question addressed in the title of the present
section: should water waves remain irrotational (and should the prob-
lem at hand enter the domain of validity of a certain asymptotic
regime), we could use one of the asymptotic models mentioned be-
fore to significantly simplify its theoretical or numerical treatment.
However, a deficit of irrotationality that does not disappear as v — 0
invalidates the use of such model, even in the correct asymptotic regime
(the two limits in fig. 5.1 do not commute).

II. Non-convergence to the irrotational so-
lution

To investigate the high Reynolds number limit when the bottom
boundary I'; is not flat, we make use of the method described in chapter
3 with the initial condition contructed from (4.N),® with an initial
amplitude a = 0.1. A larger value of a, like e.g. a = 0.15, yields
a overturning wave rather quickly when an obstacle lies on the bed.
The simulation parameters used in the various simulations appearing
in this chapter are available in tables 5.1 and 5.2.

IStandard literature on boundary layer
separation include Lagerstrom (1975),
Sychev et al. (1998), Schlichting and
Gersten (2017, sec. 2.6) or Ruban
(2018, ch. 2). Regarding the mathe-
matical literature, the reader can refer
to the work of Dalibard and Masmoudi
(2019) on Prandtl’s equation.

2To: we do not assert that the viscous

solution does not converge to an in-
viscid one. We only state that, should
separation happen, then the solution
attained as Re — +oo will not be ir-
rotational.

34.e. we prescribe the initial normal ve-

locity on the interface, using the value
described in sec. 1.1.2.

slip/Navier no-slip/Dirichlet —— Euler
1.51 1.1375
t = 10.00
1.0
o L 1.1250
0.57 /\
0.0 24 2.6 11125
1.51 0.9250
t=12.50
! Oi\m_’_//\ V/
z r0.9125
0.51
- - - T T T 0.9000
0.05 z A 3n or 18 2.0 2.2
2 2
x

Figure 5.2 — Comparison between the slip/Navier and the no-slip/Dirichlet boundary conditions for a wave of

amplitude a = 0.1 over a flat topography at Re = 10°. [parameters: table 5.

1]
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Fig. Nyt BC Rem.

100 slip MA
1000 no-slip MA

ot
[\

Fig. Nyt Re Rem.

1000 102 PR
1000 1035 PR
1000 103 PR
54 1000 1035 PR
1000 10* PR
1000  10%*° PR
1250 10° PR

Table 5.1 — Numerical parame-
ters used for the simulations over
a flat bottom and a sharp step.
The mesh advection velocity is al-
ways computed by solving the el-
liptic problem (3.9). The number
of points on the interface if always
Niop = 3000. Ny, corresponds to
the number of points used to dis-
cretise the entire boundary I';

1One could use the value of Stokes first
order solution (1.25) on the bottom
z =0 for Uy, yielding

U — 2gk
b= %"\ sinh(2khg)’

for instance.

2Stokes (1850) studied the motion of a
viscous fluid extending at infinity in
the x direction whose tangential veloc-
ity along a wall at {y = 0} is a cosine.
The corresponding solution’s vorticity
scales as

w(t,y) x Re? exp ( - Re%y) f(@),

which becomes a vortex sheet as Re —
+o00. The details of the computations
can be found in e.g. Landau and Lif-
shitz (1987). This exact problem with
a free surface has been studied by Yih
(1968).

Figure 5.3 — Schematic repre-
sentation of the numerical domain
with a rectangular step. Periodic
conditions are once again imposed
on the left and right boundaries.
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[1.1. Stability of the boundary layer laying over a
flat topography: the non-breaking case

We start by investigating the boundary layer appearing in the vicin-
ity of a flat topography, as in section I11.3 of the previous chapter, but
with a non-breaking wave that allows to carry out the simulation up
to a greater time. This is the result shown in figure 5.2 for a Reynolds
number Re = 10°, in which are compared the interfaces correspond-
ing to the viscous solution and the inviscid irrotational one. A small
gap with the Euler solution is visible for both the free-slip/Navier
and the no-slip/Dirichlet simulations with the same magnitude (about
~ 107 hy, pointwise).

Even though the latter seems to converge slower than the for-
mer, the stability of the bottom boundary layer (when using Dirichlet
boundary conditions) does not seem to prevent convergence to the in-
viscid irrotational solution in this particular case. The discussion of
sec. I11.3.2, about the convergence of the bed’s vorticity sheet to the
bottom vortex sheet strength v, as Re = +00, seems to hold.

Surprisingly, the boundary layer remains laminar in the course of
the simulation. This may be due to the oscillatory nature of the flow,
as well as the periodicity of the domain. Indeed, defining a Reynolds
number Rey, as in the theory of boundary layer over flat plate (Batch-
elor 1967, sec. 5.8),

U _ pyige,

Rey; =
where L is the length of the domain and U, is the characteristic ve-
locity of the flow our of the boundary layer but close to the bottom,!
then Rey,; a2 5-10%, which is still still far from the turbulent separation
threshold (Rey, . ~ 5- 10%). This observation could lead to the conclu-
sion that the boundary layer shall become unstable at higher values of
Re. However, the oscillatory nature of the background flow may pre-
vent this eventuality. Indeed, even though the Dirichlet boundary con-
dition leads to a layer following Prandtl’s scaling, the configuration is
in fact closer to a Stokes—type oscillating boundary layer,2 which does
not cause any issue in the inviscid limit. A way to understand the sta-
bilisation process associated with oscillating flows is to notice that the
local Reynolds number changes with time and vanishes periodically.

[1.2. Adding a rectangular step on the bed

We now propose to add an obstacle on the water bed: a rectangular
step of height hy = 0.5 and length ¢, = L/3 (with L = 27 as in
chapter 3; see figure 5.3 for a schematic representation), on which the
no-slip/Dirichlet boundary condition is prescribed.?

L;(t)




The initial condition is once again constructed by numerically solv-
ing the problem (4.N) with the prescribed normal velocity (4.2) and
an amplitude a = 0.1. This initial condition yields singularities on the
salient edges of the step: the velocity is infinite there. We shall discuss
this fact later, in sec. IV.2. Simulations are carried out with Reynolds
numbers ranging from Re = 10? to Re = 10° (in multiplicative steps
of size /10 in order to emphasise the logarithmic nature of the con-
vergence). We could not resolve higher values of the Reynolds number
for reasons that shall be discussed below.

3This experimental configuration has
been studied theoretically by Lamb
(1932, §176) and experimentally by
Grue (1992). An analytical solution
for a steady potential flow behind a
step is also computed in Feldmeier
(2019), sec. 5.2.

™
xT

Figure 5.4 — & - Time evolution of the free surfaces obtained by solving the Navier-Stokes problem (with Re
ranging from 10% to 10°) and Euler’s one as well, making use of the numerical method of Dormy and Lacave (2024).

[parameters: table 5.1]

Figure 5.4 shows the associated results at different times, all sim-
ulations beginning with the exact same initial condition. Interfaces
comparisons are done with the inviscid irrotational solution, computed
with the dipole method of Dormy and Lacave (2024). As in the flat
bottom case, a small difference appears between each Navier-Stokes
solution and Euler’s one. However, this finite gap does not seem to

143



1For two functions f, g defined on the
torus, we write

d(f,9) =||f - QHLZ(T)

- M(fg)z(e)de]é .

disappear as the viscosity is decreased. The Navier-Stokes solution
seems to converge to somethong that does not correspond to the in-
viscid irrotational one. In the following, we shall see that this is due
to vorticity being emitted at the step’s corners.

We can make the previous observation more quantitative by com-
puting distances. In chapter 4, we made use of Hausdorff’s distance
since the waves were overturning. This is not the case here so we choose
to use the standard L? distance instead.! To this end, we denote by
Yre(t) (respectively v (t)) the parametrised interfaces at time ¢ cor-
responding to the numerical solution of the free-surface Navier-Stokes
problem (1.54) (respectively the inviscid irrotational Euler numerical
solution). Following the procedure described in sec. II1.2 of chapter 2,
as long as the wave does not break (in the sense of definition 2.22), we
can define ng.(t) (resp. ng(t)), the single-valued interface associated
with g, (t) (resp. vg(t)) at time t. We then define the relevant L?
distances

dp(t;Re) = d(np(t), nRe(t))
ds(t;Re) = d(ch:mE’ (t), 77Rc<t))‘

These quantities can be computed numerically. They are plotted in
figure 5.5.

—— Re=10% ----- Re = 102 Re = 10? Re = 10%® Re = 10? Re = 10%® Re = 10°
0.15
0.051 e T I B
0 5 oo 15 20 0 5 10 . 15 20

Figure 5.5 — (left) L? distance dj between each Navier-Stokes solution and Euler’s irrotational one as a function of
time. (right) Evolution of the L? distance d; between the Re = 10° solution and the other Navier-Stokes solutions,

for which Re < 10°.

2but it still increases slowly with time

Eafeguard against self-
plagiarism. Some paragraphs

in the following sections are repro-
duced from Riquier and Dormy
(2024a) verbatim. J
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On the left part of fig. 5.5, we observe that the distance dj to
Euler’s solution approaches a non-vanishing function of time, which
slowly increases on average. At the same time, the distance dj de-
creases with the Reynolds number?, thus exhibiting characteristics of
a Cauchy sequence. We can therefore conclude that the Navier-Stokes
solutions seem to converge, as Re — 400, towards something that does
not correspond to the Water Waves solution, even though the initial
condition is irrotational.

[II. Boundary layer separation

To understand the lack of irrotationality that prevents the conver-
gence to the inviscid irrotational solution, we show the flow’s vorticity
at Re = 10° in figure 5.6.

The situation is rather clear: at the edges of the rectangular step,
vorticity is shed from the boundary layer into the bulk. That is, the



2m

z 3
0 2 ™ 2

Figure 5.6 — & — Evolution of the vorticity w = d,u, — d,u, corresponding to the simulation with Re = 10°. The
color scheme has been centered on the range [—5, 5] to highlight the vortices. [parameters: table 5.1]

145



IA
&
o€
v
(2]

!

1.0 Re = 10%°

1.0 Re = 10*

0.5

1.0 Re = 10*

0.5

1.0 Re = 10°

0.5

<

xT

Figure 5.7 — The vorticity w at
fixed time ¢t = 10 for different val-
ues of Re close to the right edge of
the step.

1In 3d the situation is somewhat differ-
ent because the vortex lines are sub-
ject to the Crow (1970) instability
or the elliptic instability (Moore and
Saffman 1975). See the review article
by Leweke et al. (2016).
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background (potential) flow associated with the “passage” of a wave
above a rectangular obstacle destabilises the boundary layer, which
eventually separate. This separated vorticity takes the form of a con-
tinuous jet (a vortex layer) whose strength depends on the background
flow’s velocity. Once in the bulk, each filament winds-up onto itself
because of the Kelvin—Helmhotz instability (Benjamin and Bridges
1997a,b; Bergmann et al. 2024; Birkhoff 1962; Caflisch et al. 2022;
DeVoria and Mohseni 2018; Meiron et al. 1982; Sulem et al. 1981),
yielding the “vortices” visible in fig. 5.6. We should stress that the
physical mechanism through which a coiled vortex layer becomes a
vortex core (or simply a vortex), is far from understood (Caflisch et al.
2022).

A comparison of the vorticity generated near the right edge of the
shelf for different values of the Reynolds number Re is available in
fig. 5.7. This vortical structure does not disappear as the viscosity
is decreased. In fact this is rather the contrary: a vorticity layer is

1
continuously shed into the bulk, with a width ~ Re 2 and an intensity

~ Re? (Caflisch et al. 2022; Schlichting and Gersten 2017; Widmann
and Tropea 2015). As Re — 400, it seems to converge, i.e. we notice
some coherence between the different snapshots shown in fig. 5.7. We
cannot assert, however, that it will remain so should the Reynolds
number be increased further.

An enlightening analogy can be made with the flow around an air-
craft’s wing, for which the detachment of leading edge vortices has been
extensively studied (see e.g. the thorough discussion in the introduc-
tion of Widmann and Tropea (2015), wherein the topological consid-
erations of Foss (2004) are used). This is motivated by the streamlines
visualisation available in fig. 5.8. In this case, the vortex layer coils
in the vicinity of the edge too, yielding a vortical structure mainly
concentrated in vortices.! Therefore, motivated by this rich theory,
we shall talk about vortices afterward.

A surprising aspect that can be noticed in fig. 5.6 is that the
separation actually takes the form of vortex pairs. This is due to the
oscillatory nature of the flow, which is the subject of figure 5.8. Indeed,
as the crest of a wave passes above the edge, the flow in this region
undergoes a complete stream reversal. We remind the reader that, as
can be noted in figures 4.2, 4.3 and 4.4, the streamlines globally wrap
around the crests and the troughs of the free surface. Locally, in the
vicinity of the obstacle the underlying irrotational flow gets through
three different stages. First, at t = 2 in fig. 5.8, in the vicinity of the
edge it roughly corresponds to an up-going flow near a corner, whose
velocity potential is well-known (Batchelor 1967, sec. 6.5, also shown
in fig. 5.9). At a later time (about ¢t = 4), as the inflection point of
the interface passes above the salient edge, the direction of the stream
changes. The streamlines no longer wrap around the topography. In-
stead the horizontal left-coming flow meets the vertical up-going one
at the corner in a fashion similar to that of the rear tip of an aircraft’s
wing. These streamlines effectively guide the pair of vortices out of
the boundary layer. Incidentally, this corresponds to the passage of
the (outgoing) free streamline ¢ = 0 on the edge of the shelf. Fi-
nally, at subsequent times (around ¢ = 6 in fig. 5.8), the underlying
irrotational flow wraps once again around the corner, but now in the
opposite direction.

Throughout the passage of a crest, the direction of the flow outside
the boundary layer corresponds to the wave propagation direction and
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Figure 5.8 — The streamlines and the vorticity w in the vicinity of the right salient edge of I';, for Re = 10%. The
color scheme has been centered on the range [—5, 5] to highlight the vortices. The ¢ = 0 line is drawn using dashes.

the vorticity generated in the boundary layer has a negative sign (fig.
5.8, right). As a trough passes above the edge, the stream’s direction
is opposite to the wave propagation so the vorticity has a positive sign
(fig. 5.8, left). This empirically yields, as the vortices are separated
from the boundary layer, the correspondence

crest <+ negative vortex,

trough < positive vortex.

Of course, the mere presence of the obstacle has an important effect on
the potential background flow too: the initially monochromatic wave
does not remain so at subsequent times. We cannot assure that, as the
initial wave will have collapsed into many smaller ones, the mechanism
described above will remain that simple. In particular, some modes
might not have a large-enough amplitude to change the direction of the
bottom tangential velocity. This problem is somewhat similar to the
complex dynamics happening as a solitary wave reaches an obstacle,
which has been extensively studied in the literature (Grimshaw 2007;
Johnson 1973b).

After being shed, the counter-rotating vortices do not move along
a straight line (as they would do under their mutual influence) since
they are subject to the background irrotational flow, which carries
them in the vicinity of the free surface (fig. 5.10). A tiny disturbance
(not shown) due to the presence of these vortices is noticed in the
Re = 10° simulation. Further investigations are needed to precisely
quantify the effects of vortices on free surfaces (we mention the recent
work of Moffatt and Kimura (2024) regarding the similar problem of
counter-rotating vortices acting on a vortex sheet).

Will the flow considered here become turbulent should the Reynolds
number be increased further? That is, will more chaotic structure ap-

\\\\‘

Figure 5.9 — Analytical solution of
Euler’s irrotational equations near
a corner.
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Figure 5.10 — The vorticity w at
fixed time ¢ = 11.5 and Re = 10°.
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Figure 5.11 — The bump function
used to mollify the topography.

IWe could have used a gaussian to
create the topography instead of the
present bump function. However the
latter has a compact support while the
former does not.

Fig. Nyt r Rem.

1250 0.1 PR
1250 0.2 PR
IvVv.2 1000 0.3 PR
1000 0.5 PR
1000 1 PR

Table 5.2 — Numerical parame-
ters used for the simulations over
smoothed rectangular steps of cur-
vature radii ». The mesh advec-
tion velocity is obtained through
the methode Ell.. The number of
points on the interface if always
Niop = 3000. Ny, corresponds to
the number of points used to dis-
cretise the entire boundary T';.
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pear at smaller viscosities? In a steady non-trivial background flow,
this would be the case. Indeed the rich fluid dynamics literature
regarding the flow downstream of a bluff body agree on this point
(Schlichting and Gersten 2017). However, the flow considered here is
oscillating. This should not prevent a turbulent behaviour to get trig-
gered, but it would be of pulsating type. Indeed, as the background
velocity goes back and forth in the vicinity of the bed, it vanishes pe-
riodically. In such moment, the associated Reynolds number does so
too and turbulence cannot occur continually.

IV. Separation from a smooth step

Boundary layer separation happening near a sharp corner is not
surprising from the fluid dynamicist point of view (Batchelor 1967).
Indeed, these vortical structures have already been observed numer-
ically by Lin and Huang (2009, 2010) and experimentally by Chang
et al. (2001, 2005). We now want to investigate whether this be-
haviour persists around edges of finite curvature. To that end, we
consider smoothed out versions of the rectangular topography consid-
ered before, built usind the method of mollifiers introduced originally
by Friedrichs (1944).

[V.1. Constructing the topography

We briefly describe the mollification of the topography for the
sake of completeness. Let v, : (0,L,) — T? the periodic arc-length
parametrisation of the sharp rectangular step consider in the previous
section. It is a continuous function, differentiable almost everywhere.
In fact, it is not differentiable at the salient edges of the step. Introduce
the infinitely differentiable bump function ®, defined by!

B(z) = Cexp(fﬁ) for —1<z<1,
0 otherwise,

with the normalisation constant C' chosen so that |®],:g) = 1. This
function is represented in fig. 5.11. Let r > 0 a parameter that
shall correspond to the minimum curvature radius of the step. The
associated mollifier is then defined as

- Lo(),

and can be used to smooth out the function -, through a convolution,

Yo, (8) = [ ®,(0)v,(s — o) do.

The parametrisation =, ,.(s) obtained in this way is then used to de-
fined a new topography. It is infinitely differentiable, with a minimum
curvature radius roughly corresponding to r. Furthermore, as r — 0,

we have 7, ,.(s) = ¥,(s)-

IV.2. Does separation persist around smooth obsta-
cles?

Yes it does! To see this, we have carried out numerical simulations
with different values of r at fixed Re, and with different values of



Re at fixed r. The numerical parameters for these simulations can
be found in table 5.2. The associated vorticity at fixed time ¢ = 10
and for different values of Re is shown in figure 5.12. We also plot the
evolution of the vorticity with time at fixed Reynolds number Re = 10°
in figure 5.13. Three interesting regimes can be observed. First, on
the topography with the smallest curvature (r = 1), no separation
happens. Then, looking at the » = 0.5 and 0.3 results shown in fig.
5.12; one observes vorticity being separated from the boundary layer
but remaining close by and slowly drifting on the sheet.!Finally, in
both the » = 0.2 and 0.1 simulations, the boundary layer is completely
separated: pairs of vortices are shed in the bulk, as with a sharp shelf
topography, but with a smaller intensity.

The presence of these vortices is reminiscent of the von Karman
vortex street,? in which an adversary pressure gradient in the bound-
ary layer leads to the emission of vortices past a cylinder when the
Reynolds number is increased. We are, in fact, considering a rather
similar situation except that vorticity stripping is not here associated
with a steady stream, but instead results from an oscillation of the
background flow with time.

The streamlines around the r = 0.1 shelf are visible in figure 5.14.
The qualitative discussion about fig. 5.8 still holds. However the
separation mechanism here is somewhat different. Indeed, no singu-
larity is present in the background flow now. The vortices are once
again ejected far from the boundary layer as the free streamline ¥ = 0,
whose relevance for the present problem is discussed by e.g. Ackerberg
(1970, 1971), passes by.

We have already pointed out in sec. II.1 that the Reynolds number
Re defined above, and generally used in the theory of Water Waves, is
of no interested to study BL separation. Instead, another one, denoted
Rey, should be defined from the length of the step ¢, and the fiducial
velocity of the background potential flow outside the boundary layer
Uba

R‘eb = gbUb Re,

since Re plays the role of the inverse viscosity in the non-dimensional
world. Why should the relevant length be ¢, when it comes to bound-
ary layers? The reason is that ¢, corresponds roughly to the maximal
length on which the topography is flat and parallel to the background
flow. Such quantify is known to be relevant for the boundary layer
generation mechanism (see e.g. Ruban 2018, sec. 1.1).

Having defined a relevant Reynolds number, we now investigate its
scaling as the curvature increases. In particular, we put emphasis on
the fiducial velocity U,. It corresponds to the maximum background
flow’s velocity measured on the bed. For a flat bottom, we have already
written the value of U, using Stoke’s first order solution. Unfortunately
we cannot provide a closed formula for the case with a smooth step.
However, we can easily extract its scaling regarding the value of r. The
idea is as follows: we consider only the flow in a small neighbourhood
V.. of an r-mollified edge (looking, from afar, like the domain depicted
in fig. 5.9) and introduce a diffeomorphism (even a conformal map)
¥, : V, — R2, with R? denoting the upper half-plane {z > 0} C R?
(fig. 5.15). Let

$(y) = (¢, 2 =1)(y),

the velocity potential ¢, expressed in the V,. domain. We can assume

Figure 5.12 — & - The vortic-
ity around a smooth step at time

= 10 and Re = 105 for different
curvature radii r > 0.

LOne could aptly say that the vortex is
“riding” the sheet.

2von Karman (1911)
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Figure 5.13 — & - Evolution of the vorticity in associated with the flow created by the passage of a wave over a
mollified step with minimum curvature radius r = 0.1, for a Reynolds number Re = 10°. [parameters: table 5.2]
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Figure 5.14 — The streamlines and vorticity w in the vicinity of the mollified step with curvature radius r» = 0.1 for
a Reynolds number Re = 10°. The free streamline 1) = 0 is drawn using dashed lines. [parameters: table 5.2]

self-similarity of the domain,
—y (Y
E'r(y) - E1 (7") ’

meaning that we put the origin on the sharp tip at » = 0 and the
domains ¥, are obtained from ¥; by contraction. A simple calculation
shows that the velocity u,. scales according to!

u, (@) = V(@) = V, [6%,](x)

- %sz:l (%) [vyo%] @)

c
o (7)
—uqy | — ).
ro i \p
Even though our domain is not self-similar with respect to r, the above
computations applied in the vicinity of the curved edges. In these

Figure 5.15 — Schematic represen-

regions, the typical velocity U, scales as O(r~') and so does the bed’s tation of the domain V7, and the dif-
Reynolds number Re,. It is therefore not surprising to see separation feomorphism 3.

appear once a certain viscosity-dependent curvature threshold has been

reached. IThe author would like to thank C. La-

The above considerations motivate the following assertion: at fixed cave for his help with this argument.

Reynolds number, a curvature threshold exists above which separation
shall happen. Equivalently, at fixed curvature, there exists a critical
viscosity below which the vortices observed in this chapter may appear.
A direct consequence of this conjecture is that the vanishing viscosity
limit, the convergence to Euler’s irrotational solution cannot hold as
soon as the topography is not flat.

Before moving on to a general discussion about boundary layers
equations around curved walls, we would like to emphasise that even
though this work is two-dimensional, our conclusions apply to the 3d
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case as well. Indeed, the flow associated with water waves in the
near-shore regime is only weakly three-dimensional, in a sense that
remains to be made precise, up to the splash. Furthermore, in light

1Squire (1933) of Squire’s result,! the critical value of Re, can only be even lower for
three-dimensional flows.

V. Apleaforatheory of boundary layers on
curved concave walls

Before stating the conclusions of the present work, we would like
to discuss more generally boundary layers appearing in the vicinity of
no-slip boundaries with concave (in the sense depicted in fig. 5.16) ge-
ometries. Indeed, this problem does not fall into the regime of validity
of Prandtl’s equation (Blasius 1908; Prandtl 1904) or Gértler’s equa-
tion (Floryan and Saric 1982; Gortler 1941; Saric 1994), as shall be
emphasised soon. We therefore propose to write down boundary layer

Figure 5.16 — Schematic represen- equations using the scaling laws observed in the previous sections.
tation of the Frémet frame (s,n)

used around a concave wall (whose V.1. The Navier-Stokes equations in the Frénet frame
curvature radius is R,) with a

boundary layer of size 9. We consider a viscous fluid in a fixed dimensional domain £ C R?,

with C? boundary I' = 9 whose arclength parametrisation is denoted
by ,(s). Depending on the geometry, the domain of -, can be either
T, R or (0,L). Its curvature (taken positive for concave regions) at
arclength s is k(s) and the associated curvature radius is

| R.(s) = |s7*|(s)-

Associated with the arclength parametrisation, we can introduce the Frénet frame (s,n) as in sec. IV of
chapter 4. We remind the reader that n corresponds to the normal coordinate, defined up to the cut locus
of the boundary (see sec. V.4.2 of chap. 1). In a neighbourhood of the boundary, this means that n extends
up to R,(s) when (s) < 0. We recall the line element of the Frénet frame,

2
ds®ds =ds®ds + (1+/~i(s)n) dn ® dn,

which can be used to obtain closed expressions of every differential operator using the tedious formulas
presented in appendix B. Using the definitions of this very appendix, we introduce the Lamé coefficient
h,(s,n) =1+ k(s)n. Expressed in this coordinate system, the dimensional Navier-Stokes equations become
(Massey and Clayton 1965; Ruban 2018)

K

h

19,p 1
U, = — p hsn +v [h%@ssus + Oty

1
Oyug + = u Ogug + u,0,u, +

n n

u, 0.k —nd_kO.u K 2k0.u —,%Qu}
n-s S Ss7Ss + 7anus _"_ SN S (5,3&)
b, ho, h2,
1 2 1 1
Oy, + . u 04, + U, 0, U, + /»”;Lus =— ; 0,p+v [h28$sun + O i,
u 0.k —nod. kO u K 2k0.u —l—m?u}
SSs S s n + 78’"4“71 _ SSs n (5.3b)
b, h., h,
dyuy + 0, (hyu,,) =0, (5.3¢)

where the velocity is written in the (s,n) coordinate system as

u(t,s,n) = uy(t,s,n)s(s) + u,(t, s,n)n(s).
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Our objective is to use the system presented above to formally study the validity of common boundary layer
regimes, as well as motivate a new set of equations taking into account the scaling U, ~ « discussed in the
previous section.

V.1.1. Introducing a background inviscid flow. We begin our journey by decomposing the velocity
(and pressure) as the sum of a background inviscid flow (Up,pg) and a viscous perturbation (u,,p,).
We furthermore assume that V+ - Uy = 0, meaning that there exists a velocity potential ¢ such that
Uy, = Vo¢g. We do not suppose that Uy, is steady. Since Uy, solve Euler’s equations,

1
A¢E:Oa

we obtain a perturbed equation for (u,,p,) readily,

1
atuu—l—UE-Vuy+uy-VUE+uV~VuV+;VpV:uAuU
V.-u, =0.

V.1.2. Non-dimensionalisation. We assume that the domain possesses a characteristic length L which
does not depend on the maximum curvature k,,,,. The problem at hand thus contains three difference
fiducial lengths: L, R = k.., and § the boundary layer thickness. Regarding the characteristic velocity,
we choose Uy, the background flow’s typical velocity when the curvature x,,,, is unity. A straightforward
non-dimensionalisation of eqs. (5.3), coupled with the insertion of the decomposition discussed above, yields

(instantly dropping the f superscripts usually denoting non-dimensional quantities)

1
Oug + o (Usasus +u,0,U, + usasus) + (UnanuS +u,0,U, + unanus)
n,p
K 0,p
+ B — (Usun +u U, + usun) +
ho ho
1 1 U, Ogk — N0 KO U K 2Bk0u,, — 32Kk u,
:% l}ﬁﬁ8$8u3 " annus * [)) ‘ h3 6( — ‘8 h Banus * ( h? B | ]

(')tun—&—i(US@Sun—&—uS@SUn—&—u@u )—|—<U8 u,, +u,0,U, +u,0,u )

h s7s’n n-n"n n-n-n n-n-n
n,B

+ B L(?Usus + ug) +0,p
hang
1 1 0,k —no, k0O 28K0 32 K2
_ L lzassuﬁamuﬁg Us Ol — MO0 1 g g, — 200 T TR “”1
Re | b g hrp hn hos

Ogug + 0, (hp g1, ) =0,

with (U, U,,) the background velocity expressed in the Frénet frame, (ug,u,,) now representing the compo-
nents of u, once non-dimensionalised, and where the following non-dimensional parameters appeared,

Re (Reynolds) B = Fpaxl (curvature).

UL
- v max
The Lamé coefficient h,, has become, through this non-dimensionalisation process, the factor
hy, 5(s,n) =1+ BK(s)n.

V.1.3. Introducing the boundary layer scaling. The final part of these computations consists in
inserting the usual scaling laws of the components (u,,u,) in a boundary layer of (non-dimensional) size
0= Refé, namelly

Uy Eus(t,s,N> and U, ERG_% un(t,s,N),
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1
into the above system, where we introduced the boundary layer variable N = nRe?. For now, we keep all
the terms. Simplifications of this system using different assumptions regarding the parameter space (Re, )
shall be carried out in the following section. In the end, we obtain the total boundary layer equations,

Ouy + ———— (Usasus +u,0,U, + usﬁsus) + (UnﬁNus vVRe 4+ u,0nU, + u,LaNus>
14 BN
~ 0
+ B — <U5un +u,U,VRe + usun) 4+ P (5.5a)
1+ SN 14 BN
_ Ri 8Sius I S Ifunasm — {Vﬁsﬁgsus . Bn@i\,us n Ii2[§/£85un —NR,eBZﬁuS
¢ (14 BkN) ¢ (14 5kN) L+ peN e (14 BkN)
1
o, + ——— (Usasun +u,0,U,VRe + usasun) + (UnaNun\/ Re +u,,05U,, VRe + unaNun)
1+ SN
nﬁRe
—————(2U,u, +u2) + Redyp 5.5b
ey (2ot 1) + Redy (5.5b)
_ Ri 5‘Siun O, + lfusasliRe —NNﬁs/?f)@Sun n /Bﬂnazyun _ 20k, u, jL 32,z2un
(14 BrN) ¢ (14 BkN) 1+ BN (14 BrN)
O,ug + 8N<<1 + BHN)un) =0, (5.5¢)
where we have defined a new non-dimensional number
G—B 8 (5.5d)

VRe

the ratio of the boundary layer’s thickness and the minimum radius of curvature. We could neglect the U,
term because of the non-penetration condition stating that it should remain a small quantity in the vicinity
of the boundary.

V.2. Formal asymptotic regimes

With the complete boundary layer equations (5.5) at our hand, we can rapidly investigate some formal
asymptotic regimes. In particular, we would like to discuss the relevance of Prandtl’s and Gortler’s equations
in the case of a curved concave boundary.

V.2.1. Prandtl’s equations. In his original work, Prandtl (1904) was interested in the vorticity sheet

~

appearing near a flat boundary (5 = 0). It is however sometimes argued that its regime of validity can be
extended to curved boundaries as well.

In order to obtain Prandtl’s system, in the form used e.g. by Sammartino and Caflisch (1998a), we must
first set U, = U,, = 0. This does not mean that the background flow identically vanishes, but rather that

the decomposition discussed in sec. V.1.1 is not assumed. Doing so, we obtain as ,é — 0 and Re — +00

Opug +ug 0 uy + u,0nu, + 0p — Oy = o) + O(Re’l)
Onp = O(P) + O(Rofl)

~.

Osug + Iyu,, = O(P),

which are exactly Prandtl’s equations (once the appropriate set of boundary conditions are added), valid for
large values of Re and small values of B, which amounts to § < R, i.e. a boundary layer of small thickness
compared to the minimum curvature radius. This does not correspond to the regime of interest.

There exists other formulations of Prandtl’s system in the literature, obtained through other simplifying
assumptions. Regarding the mathematical analysis of this system, Oleinik (1966) proved a first existence
result under mild hypothesis regarding the initial data. Sammartino and Caflisch (1998a) proved that this

154



system is well-posed for analytic initial data. Then Gérard-Varet and Dormy (2010) obtained an ill-posedness
result in any Sobolev space. An intermediary result is the one of Gérard-Varet and Masmoudi (2015), in
which local existence is obtained in some Gevrey space. Separation of the boundary layer has been studied
later by Dalibard and Masmoudi (2019).

V.2.2. Gortler’s equations. Gortler (1941) studied the stability of boundary layers on curved walls in
3d. We obtain a similar set of equations in 2d by keeping the O(Re 5) term appearing in (5.5) instead of
discarding it. However, should we do so, the pressure term in (5.5b) would not possess the right scaling.
This issue is commonly bypassed by assuming that the pressure p = O(Re_l) (Saric 1994). Furthermore,
the nonlinear terms are also dropped out since most studies are only concerned with the linear stability
analysis of the vorticity sheet. The corresponding asymptotic regime is then

~

Re — +o0 and 5 —0 while Go = Re - = constant,

where the non-dimensional coefficient Go is called Gortler’s number for obvious reasons. For a steady flow,
this yields the following set of equations

U,0,uy + u,0,U, + U, dyu, + u, 05U, — dyyu, = O(3) + O(Re™?)

)+ O(Re*)
3.

O,ug + Oyu,, = O(B
This is exactly the system of equations obtained by Floryan and Saric (1982, eqs. 16-18) when studying
theoretically the Gortler instability of the boundary layer, resulting in the appearance of longitudinal counter-
rotating vortices in the layer as Go reaches a threshold value.
Depending on the author, Goértler’s number Go may be defined in a different manner. This is due to the
many paths that can be taken when carrying out the non-dimensional set of equations.

1 @

Usasun + usasUn + UnaNun + unaNUn - aJ\’N/u’n + 2GOK/U’SUS + aNp = O(

V.2.3. Toward a boundary layer equation around curved concave walls. Neither Prandtl’s nor
Gortler’s systems describe the present case, in which § — oo and the background flow is O(3). In this limit,
separation should occur at fixed value of Re once 3 reaches a threshold. In order to study the linear stability
of egs. (5.5) in the case of a finite value of both § and Re, we discard the non-linear terms (in u, and u,,)
and impose the observed scaling

U,(t,s,N) = pU(t,s) and U, <1,
yielding the “simpler” system

1 Ot + (1 + /;KJN)@NNUS

(1+/§fiN)8u —l—ﬁ\/Re(Uau +u8U)+/§2\/Re/<VUu +0d.,p= =
t%s sYs s-s n s Rel—f—ﬁﬁN

3 u, 0,k — NO,kO u, =~ 1 25&85un — RengQuS
R— ~ 3 + /3/18Nu5 + Ri =
e (1—&—;?&]\[) e 1+ BN

1 assun

Re 1+ /§I€N
~ 3 - N _ 25 32,2
T (1+ o) By, + o Ls0sr RO = NOHBy 5y 20R0sts £ 5K U
Re (1 + ﬁliN) 14+ BN

dou, + aN((l + g%N)un) —0.

(14 BKN) dyu,, + BVReUd,u,, + 2632 Re? U, + Re (1+ fuN) dyp =

This system does not seem easy to work with. However, studying its stability numerically for fixed values
of 5 and Re seems tractable in order to obtain a criterion regarding boundary layer separation. The author
is currently investigating this possibility.
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VI. Concluding remarks

In this chapter we have shed light on a physical phenomenon that has unfortunately been somewhat
overlooked by numerous prior studies regarding water waves, mainly because its consequences greatly ques-
tion the use of some two assumptions which are commonly made when studying water waves, namelly that
the flow is both inviscid and irrotational.

This very lack of irrotationality, visible in figures 5.6, prevents to use the velocity potential ¢ and the
numerous models that stem from it (Water Waves, Shallow Water, K-dV or Boussinesq, to name a few
of them). But what about models encompassing the vorticity evolution? Such models are scarce in the
literature but they do exist. For instance, Castro and Lannes (2014, 2015) obtained a new formulation of
the Water Waves equations (and shallow water asymptotic regimes) when vorticity is initially present in
the flow. However their model does not encompass vorticity generation mechanisms. Another approach
would be to consider viscous shallow water asymptotics. This is commonly made using the free-slip/Navier
condition on the water bed (such models are discussed in e.g. the review of Bresch 2009). The author
is only aware of two shallow water models mathematically justified from the Navier-Stokes equations with
prescribed no-slip/Dirichlet condition on T, namelly the works of Bresch and Noble (2007) and Boutounet
et al. (2008). In both studies, the inviscid limit cannot hold as the correction term is of order O(uRe) (with
u the shallowness), that is, the fluid domain is completely encompassed in the boundary layer. Furthermore,
in the first mentioned study, the bottom topography is taken flat. A final approach worth mentioning is
to include the turbulence effects, should they be present, directly inside the shallow water model, as in
Kazakova and Richard (2019) and Richard et al. (2019). However, in these studies the bottom boundary
condition is not the one considered here so the vorticity generation would not correspond to ours.

Setting aside the mathematical considerations regarding the vanishing viscosity limit, real-world water
waves are characterised by a very high but finite Reynolds number. Indeed water is not an inviscid fluid.
Therefore everything is not lost: for a given topography, there should exist a regime of validity for which
the difference between the viscous and inviscid solutions remains small and the separation considered in
this chapter does not happen. When using an inviscid model over a non-flat topography, one should still
compute the Reynolds number which should be:

1. large enough as to control the difference between the Navier-Stokes solution and their model’s solution.

2. small enough to prevent the separation to happen. This last point depends on the considered (at
least C?) topography. The author is currently unable to provide a satisfying separation criterion,
unfortunately.

This is schematised in figure 5.17. Of course, further investigations are needed to confirm that the boundary
layer indeed separates in the smooth case. This should be done experimentally and numerically (with a
different method).

As a final note, we stress that a simple way to reduce the uncanny effects of the vortices emitted by
the wave would be to artifically introduce pairs of counter-rotating vortices in the flow. This possibility is
currently being considered by the author but the major difficulty remains to estimate the strength of each
vortex.

Separation

starts
|

Re

|
|
|
| \
| L4
!
|

error with Navier-Stokes decreases vorticity increases
Figure 5.17 — Validity of an inviscid model for a given non-flat topography. The orange color represents the error
between the solution computed with an irrotational inviscid model and the physical Navier-Stokes solution.
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Conclusions and perspectives

The present work focused on the description of breaking water waves (definition 2.22) using three different
approaches. The first one (corresponding to chapter 2) was the most theoretical: we tried to extend a set
of equations describing non-breaking water waves, the Zakharov—Craig—Sulem equations (1.43) which are
commonly used, to the case of an overhanging wave. The second approach (chapter 3) was computational: we
developed a numerical method to solve the single-fluid free-surface incompressible Navier-Stokes equations
(1.54) with a Lagrangian advection scheme of the free surface that enabled the simulation of plunging
breakers. The last part of our work (chapter 4) was more practical: we used the numerical method already
mentioned to investigate the vanishing viscosity limit of a breaking wave arising from an irrotational initial
condition.

The other two chapters were not directly related to the breaking phenomenon. In chapter 1 we motivated
the various primitive equations commonly used to describe water waves with a particular emphasis on the
near-shore regime. In the final part of our work (chapter 5), we discussed the irrotationality assumption
which is commonly made to introduce the velocity potential ¢ and hence simplify the equations greatly.
We highlighted its incompatibility with a physical phenomenon that could arise in nature: boundary layer
separation.

In the author’s opinion, the threefold approach has a major limitation: it has raised more questions than
it has successfully answered. Therefore, the present work may seem too phenomenological. This, in turns,
leaves a bitter aftertaste of non-completeness, at least to the author. Unable to provide meaningful answers
to our fabulous reader, we would like to, at least, raise their interest. To this end, we shall briefly discuss
some of the questions that appeared throughout this thesis and that the author would like to tackle in the
(hopefully near) future.

On the Breaking Waves equations

Regarding the Breaking Waves equations (that can also be called Craig’s system), motivated in section
IT of chapter 2, almost all questions that could be asked remain unanswered. We have shown that they enjoy
a non-canonical Hamiltonian structure and that they can be reduced to the classical Water Waves equations
when no overhanging region exists. Aside from that, we are not currently able to say anything regarding
any of the following topics:

1. Conserved quantities. Having at hand a conserved Hamiltonian functional (sec. I1.3 of chapter 2),
we could use the theory developed by Olver (1980) in order to obtain the Lagrangian counterparts of
the Eulerian conserved quantities and their associated symmetries. We mention that the Lagrangian
quantity obtained by Luke (1967) has already been extended to the breaking case by Bridges and

157



Donaldson (2011).

2. Well-posedness. Making use of a time-dependent diffeomorphism to a fixed domain (e.g. the La-
grangian frame), we could use an approach d la Lannes (2005, 2013b) to try to obtain a first existence
and uniqueness result for system (2.18). The regularity of the solutions constructed in this manner
should not be optimal, however. We currently do not see a straightforward way to find a lagrangian
equivalent of the paralinearisation formula of the Dirichlet-to-Neumann operator obtained by Alazard
and Métivier (2009) and thus reduce further the regularity of the solutions.

3. Shallow Water asymptotics. In sec. I1.4 we non-dimensionalised the Breaking Waves equations,
thus letting the shalowness parameter p appear. To investigate the p <« 1 asymptotic regimes, a
straightforward adaptation of the commonly used averaging method (Lannes 2013b, ch. 5) will not
work. Indeed, the free surface not being the graph of a function prevents a vertical averaging to be
carried out.

4. Numerical analysis. Simulations of three-dimensional inviscid overhanging water waves are scarce
(Guyenne and Grilli 2006, we mention once again the work of). With the two-dimensional Breaking
Waves equations at hand, employing the Boundary Element Method (BEM) to compute the Dirichlet-
to-Neumann operator seems tractable. The author has already started working on such method.

Boundary layer separation in water waves

The physical phenomenon highlighted in chapter 5 does not arise in most commonly used reduced models
as it yields a finite difference between Euler’s irrotational solution and the Navier-Stokes one. Therefore,
we need to provide the community with criterion for the appearance of the vortices visible in figures 5.6 or
5.13. This is currently being investigating from the viewpoint of fluid mechanics by studying the stability
of the steady Navier-Stokes equations with a boundary layer in the vicinity of a concave wall. The resulting
criterion should, however, be geometry-dependent.

As mention in the conclusion of chapter 5, a way to decrease the effects of the separated “vortices”
would be to manually add them to the inviscid flow. To to so, we first need to quantify the separated
vorticity and then implement it in the potential code of Dormy and Lacave (2024) for instance, with hope
of reducing the error between the two solutions. From the theoretical viewpoint, however, we cannot state
that the separated Navier-Stokes solution should converge, as Re — 400 to the Water Waves system plus
point vortices. We can however hope to reduce, in this manner, the difference between the irrotational and
the viscous solution with Dirichlet boundary conditions.

Other unrelated questions arose during the last three years. We do not mention them here but the author
surely hopes to have the chance to pursue his work on these issues with his collaborators.
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Appendix
Mathematical tools and notations

For the sake of completeness, we provide in this first appendix a description of important mathematical
notions that are used in this work. To this end we shall first introduce various notations related to functions
spaces and recall some well-known properties from functional analysis. In a second step, completely
independant from the first, we propose an brief introduction to the language and notations of differential
geometry. We do not aim at self-containedness. Hence we provide references dedicated to each subject
that are, in the author’s opinion, clear and reliable sources.

[. Functional setting

The various definitions and notations of this section can be found in the books and lecture notes of (in
alphabetical order) Bahouri et al. (2011), Brezis (2010), Evans (2010), and Gallagher (2020), for instance.

[.1. Function spaces

Let d > 1 and © C R? an open set (with straightforward adaptations to the d-torus T%) with boundary
0f). We only consider real-valued functions but adaptations to functions f : Q — C are easily made. If
a € N is a multi-index, we set

d
ol = a, (A1)

Let D; the weak derivative with respect to the j-th coordinate of R?. For a € N? we define

We also set D to be the weak derivative equivalent of the V operator. We then define:
— C(9) (or C(Q)) the space of continuous function functions on Q (or ).
— C*(Q) the space of continuous functions whose derivatives up to order k& € N are continuous.
— D(£) the space of smooth functions f € C°°(2) with compact support in Q.
— D*(Q) the space of distributions on €.
— 8(R%) the Schwarz class of functions.
— 8*(R9) the set of tempered distributions.
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LP(Q) (1 < p < 400) is the usual Lebesgue space of functions f : Q — R such that

| /m) »

ess sup f for p = +o0

L?(Q) is a Hilbert space for the inner product

(f, 9>L2(Q) = /Qfg (A.4)

W’“’(Q) for k € N;1 < p < 400 is the standard Sobolev space endowed with the norm

s l

Lo ) for p # 400
lodl<k

gl&);”D“fHL @ for p = 400
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HE(Q) = Wk2(Q) is the nonhomogeneous Sobolev space of order k. It is a Hilbert space for the

scalar product
(7:8) ooy = 5 (0°D%) ao

|a|<k

HE(Q) is the completion of D(Q) for the H*norm. We can see functions in H{ () as vanishing on
the boundary (even though the reality is slightly more complicated, see e.g. thm. 5.5.1 in Evans
(2010)).

H*(Q) is the topological dual of H}(12).

W*P(Q) is the homogeneous Sobolev space with norm

(e

1

i Q)) for p # +o0

”fHW o lal=k (A7)
‘Iﬁi’,ﬁ”DafHLoo(Q) for p = +oc
This allows to define H*(Q) = W*2(0Q).
The Fourier transform of functions f € L!'(R?) and its inverse are given by,
1 ) 1 )
T = — | flx) e™¢da with inverse Ff(z) = 741/ (&) -e™Ede.
V 27'[' R Vo2r JRé

Using the Fourier transform we are able to define the H*(R%) and H*(R?) Sobolev norms for all
sc€Ras

—— w0+ @ e as)

It is easy to prove that whenever s € N, both definitions of H*(R%) (or H® (R9)) coincide.

Remark A.1. (Bahouri et al. 2011, props. 1.34 & 1.36) The space H*(R%) is a Hilbert space for
s < d/2 only. Moreover we have the identification H—*(R%) = (Hs(Rd))* only for |s| < d/2. These
unappealing properties encouraged Lannes (2013b) (following Deny and Lions 1954) to work with
the Beppo-Levi spaces instead (see next notation).

H k() and H $(R%), the Beppo-Levi spaces, are both defined in the following fashion (with equivalence
whenever s € N and Q = R9),

(0 { feD(Q): Df € H’“(Q)} (A.9a)

2s 2
FIAE[ ¢ and ||/

A5 (RY) = {f € D*(RY) : Df € HS(]Rd)} (A.9D)

In order to have separated Banach spaces, we must consider H*(€2)/R and H*(R%)/R. These spaces
naturally represent a potential (defined up to a constant).



[.2. Pseudo-Differential operators

— S™(R?) (m € R) is the class of symbols a € C*®°(R? x RY) such that for all multi-indices o, 8 € N%,
there is a constant C,, 5 such that Va,§ € R?,

m—||

Dnga(a:,ﬁ)’ < caﬁ(1 + \g\) (A.10)

— S%(R?) = U, S™(RY).
— §7°(RY) = NpepS™(RY).
— Op(a), for a symbol a € S™(R?), is the pseudo-differential operator associated with a whose action
on a function u € §(R?) is given by
1

d
V2T

Op(a)u(z) = A o, €)F [u] (€)™ dE. (A11)

[.3. Miscellaneous
— The singular support of a function u, singsupp(u), is defined from

x ¢ singsupp u < u € C™ in a neighborhood of « (A.12)
[I.  Differential Geometry 101

We propose a concise introduction to the theory of smooth riemannian manifolds to motivate the
somewhat unusual notations (for both the physicist and the applied mathematician) used in sections 1.V.4
and 2.II.1. These concepts arise naturally as one is interested in the theory of smooth d-dimensional
surfaces embedded in R4, as is the case of the water-air interface. The following is based on the classical
books of Boothby (1975), Tu (2011) and Lee (1997, 2013).

II.1. Smooth manifolds

Definition A.2 (Locally Euclidean space). Let M a topological space. M is called locally Euclidean
of dimension n € N* if for every s € M, there exists a neighbourhood U of s and a homeomorphism
w:U = p(U) where p(U) is an open subset of R™. The couple (U, ) is called a chart at § € M.

Definition A.3 (Smooth manifold). Let M a topological space. M is a n—dimensional smooth manifold
if it is
1. Second coutable and Hausdorff.
2. Locally Euclidean of dimension n with smooth transition maps (i.e. maps of the type p o1 :
YU NV) = oUNV) for two charts (U,p) and (V,)).

We could define less regular manifolds invoking less regularity on the transition maps. For any chart
(U, ¢), expanding the map ¢ as (z!,---,2™) provides a local coordinate system on M.

Definition A.4 (Tangent space). Let M a n—dimensional manifold and 5 € M. The tangent space at 3,
denoted T M is the set of all derivations of smooth functions on M at S. Elements of T:M are called
tangent vectors.

Let (U {2 }) a chart at § € M, then a tangent vector X; is an expression having the following form,

Xy = Zv ox?

J=1

B

On R", it is equivalent to the usual notion of vector. However, this definition is far more general as it
allows to set aside the representation of vectors as “arrows”.

Definition A.5 (Riemannian manifold). Let M a n—dimensional smooth manifold. A metric g is a map
that assigns to each § € M a positive-definite bilinear form g(s) : T;M x TeM — R smoothly. The couple
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| (M,g) is called a Riemannian manifold.

[1.2. Differential operations on manifold

At some points in chapters 1 and 2, we used notations commonly used to study (smoothed) Riemannian

manifolds. We do not motivate all of them (we refer our reader to the books already mentioned) but we
at least express them in some coordinate chart as to give a basic understanding of their meaning. We also
provide relations to more common quantities when M = R". In the following, M and N will be smooth
(possibly Riemannian) manifolds of dimensions m and n respectively, with coordinate charts (U, {s’}) and
(V,{r?}). The coordinates of R™ are denoted as x7.

— The differential of a smooth function f: M — R at §€ M isa I-form d;f : T, M — TR~ R,

162

of of
dof = =L dugl 4+ -+ =L d.s™ ~ T
s/ Ost 8 ot os™ 3% v/
The differential of a smooth map X : M — N at § € M, denoted by X, : T.M — Ty N
0 " O(rkoX) 9
v = = = 7 - ~ (V)T =J%.
Sy (883 g) ; Osi ork () (V ) J

It is also called the pushforward.
The pullback of a 1-form w : Ty ;3N — R by a map ¥ : M — N is a I-form ¥'w : T,M — R
obtained locally through

koy , &
mw= V@A i w= Y e
- S
gk k=1

Let s € M, v € TzM a vector and w € TEM a covector. Using the intrinsic metric g of M we can
define the musical isomorphisms between vectors and covectors as such,

wh e T M such that g(s) (wﬁ7 u) =w(u) forallue T M,
v € TEM such that g(s) (v, u) =’(u) forall u € T M.

The gradient @f(é’) of a smooth map f: M — R at § € M is a vector defined easily as
VF(E) = (dsf)*.
Let Q a third manifold, let ¥ : M — N and ¥ : N' — O smooth maps. Then we have the chain rule

expressed readily as

(Tox) =wy ~(V(¥eo 2))T = (VO)T (V)T

8,%
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II.

IT.1.

A plenty of calculus identities

Notations and disambiguations

A scalar (differentiable) function f : RY — R with gradient V f : R? — R9,

A vector field in R¢ is denoted using a boldface symbol, like e.g. u : R* — R?. The corresponding
gradient tensor is Vu while the jacobian matrix is Ju = Vu'. In cartesian coordinates, their
components are given by

ou; )
[Vu] . sz and [Ju]i’j = Bacz'

A tensor field is a function T : R — R%¢, We do not consider any higher order tensor in the present
work. Its divergence V - T is a vector field which, written in cartesian coordinates, is

Ty,

d
[V~T]i:26xf.
=

J

This convention is common in fluid dynamics textbooks.
For vectors u,v € R?, u-v = u'v is the usual euclidean scalar product. The - notation is also used
with matrices, in the following manner

u-A=u'A=ATu and A-u=Au.
The tensor product ® is such that

[u®v]ij:uivj so that Vu=VQ®u.

A plenty of identities

First order identities

(u-V)f:u-Vf <’U/~V)’U:’U,‘V’U (B.1a)
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V-(fu)=fV-utu Vf Vx (fu)=fVxu+Vfxu (B.1b)

V(u-v) = (Tu) v+ (90) - 19 (wu) = ()
=u-Vv+v-Vu :u'Vquux(qu) (B.1c)
—|—u><(V><v)—|—v><(V><u>
V-(uxv>:(qu)xv—(va>xu Vx(uxv>:uV~v—vV~u (B.1d)

+v-Vu—u-Vo
I1.2. Chain rule

Let g : R =R, f: R 2 R, u:R? - RYand r : R — R% We use the notations ¢’ and r’ as a
short-hand for the one-dimensional derivative. Then we have

/

V(gof)=(¢/ o)V (reg) =(r'o0)e (B.2a)
(for) = (Vser) -/ (B.2b)
(uer) =r'- (Vuor) V(fou)=Vu- (Vfou) (B.2¢)

V-(rof)=Vf-(r'of) Vx(rof)=Vfx(r'of) (B.2d)

11.3. Second order identities

V. -Vf=Af Au=V (V- u)-Vx(Vxu) (B.3a)

v. [Vu+(Vu)T] —Au+V(Vou) V- (fVg) = fAg+ V- Vg (B.3b)

[II. Common differential operators in arbitrary orthogonal coordi-
nates systems

We propose to derive here expressions of various differential operators in a general d—dimensional
coordinates system {¢’ }?:1 whose line element is given by

d d
ds®ds:Zh?(ql,m,q")dqj@dqj :dej®dxj,
=1 =1

that is, the corresponding metric g;; is diagonal with g;; = hf. A complete discussion of such framework
is rarely done thoroughly in the literature. The relations obtained in this section are e.g. used in sec.
V of chapter 5 to write the Navier-Stokes equations in the Frénet frame. Emphasis shall be put onto
normalised and non-normalised vectors. To provide the clearest concise presentation possible, we compare
every relation with its equivalent in cartesian form (with {z7 };;:1 the standard cartesian coordinates and
e, = €, the associated contravariant normalised basis vectors).

Let b, (k=1,--+,d) the k—th contravariant, non-normalised, basis vector associated with the coordinate
system {q-j}?zl, defined through the relation

dg’(by) = 4] = dx’(e;).

The set of 1-forms dg’ is sometimes called the covariant basis or covectors basis. Correspondence between
vectors and covectors is done though the metric. We also introduce the normalised basis vectors and
covectors defined by

v
Il
S
o
Il
o
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dg/ = hjdqj dz? = dad.

Using these notations, we can decompose every vector field v : R™ — R™ uniquely along the contravariant
bases

d d
=Y ¥(p)b,(p) = o (D).

J=1 J=1

From this decomposition, one understands readily the difficulty in working with such coordinates systems:
contrary to the cartesian case, the basis vectors vary in space too. We also notice that denoting vector
fields using a column vector, as is usually done in the standard cartesian frame, leads to ambiguities.
Indeed, the normalised and non-normalised components v/ and o/ = hjvj are different in general so one
should be careful about what each quantity represents. We choose not to use the common matrix notations
to bypass this eventual issue.

[11.1. The Christoffel symbols

As already pointed out, the basis vectors can, in general, vary in space. However, having assumed a
diagonal metric, they remain orthogonal at each point p € R™. Using this fact, we are able to obtain
simple relations for the Christoffel symbols, relating the space derivatives of the basis vectors to other
vectors as

d 8bk . . .
Z ; (=0 in cartesian coordinates).
=1

In any standard textbook (e.g. the author used the book of Misner et al. (2017) to develop this appendix),
the two following relations are proved,

7,=0 ifl+j+k+( (orthogonality)

., = FJM (symmetry)

ije =- Z (ngkm + O01Gme — 8mgkz> (link with the metric).
m=1 Jjm

The last relation can be used to obtain closed forms for the Christoffel symbols in an orthogonal frame.
Indeed, we prove easily that

; 1
I, =~ (0,h;)

gt h]
2 1
h (8 h. ) h2

I = hy (951,

where 9; de notes the derivative with respect to ¢’. The symmetric property of r’ w¢ Permits to write each
one of its component using the metric diagonal elements h; only. A word of caution here: we did not used
Einstein’s summation convention so repeated indices are not implicitly summed!

[11.2. Differential operators

— The gradient of a differentiable function f : R? — R is given, in both the normalised and the
non-normalised basis, by

d
j:1

b[\)‘H

f &1 of
O/ ’j:zlhjaquf
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— The divergence operator of a vector field v : R — R? is
1 o 1<K 0 (p . d
V~v:sza—(pv9) = 2 ,(}ljzﬂ) Wlthp:th:\/detg.

— When d = 3, the curl of a vector field v : R — R? is written as

1 b, by b, 1 hli)l hzgz h3i73
Vxv=———|0 0y 05 = 9, 05 03
Puhahs |p2y - g3 h3v® hahahy hidy  hyt?®  hg??

The d = 2 analogue, denoted V+* - v in this work, is obtained readily from the 83 component of the
above relation.
— The tensor gradient of a vector field v : R? — R? is more involved,

d d
Vv—quJ@)@v—ZZlav —FE:F”C 1 d¢’ ® b,

d L1 & & hvz s
= — _—— Aj
E E - {61} e (Bhk)—i—F “h, ]dq ® b,

u- Vo= zd:dqj(u) d;(v) =

d d
2 ; u; lajvk + ZFkﬂvé} by,
d
D

=1

w’ { oF b o] -
— |0.0F ——(8 hy,) + Tk b
h. k k Y h( k

— The divergence of a tensor field S : R? — R?*? with coordinates defined as

d
Z Fdgd @ by, = Z S*d@ @ by,
j,k=1 j,k=1

and which yields a vector field, is defined as

d 1 d
_ Z = lajsjkz (rfjjseurﬁzsf)} b
J

7,k=1 (=1

— The laplacian of a scalar function f : R? — R is computed from the gradient and the divergence
operators, yielding

1 0 (pof
Af=V . -Vf=- — | ===
p ; 0q’ (h? OqJ
— The vector laplacian can be computed by a brave and adventurous person from

Au =V - -Vu.
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ABSTRACT

The first part of this thesis will be devoted to the motivation of a set of equations that describes overhanging waves in
the inviscid irrotational regime, with either a one-dimensional or a two-dimensional free surface. This is done by setting
aside the commonly used Eulerian framework and working in Lagrangian coordinates instead. This should be seen as
an extension of the Zakharov-Craig-Sulem formulation of the Water Waves problem. The non-canonical Hamiltonian
structure of these partial differential equations is investigated and it is shown that in the absence of breaking, they can be
reduced to the usual set of equations. Emphasis is put on the various physical assumptions that are made along the way.
In a second moment, we come back to these very hypotheses and put them to the test. This is done numerically using a
Navier-Stokes based computational framework based on the Finite-Element Method (FEM). The major novelty compared
to other studies lies in the use of the Arbitrary Lagrangian-Eulerian method (ALE), which diminishes the interpolation error
greatly. The viscosity can therefore be decreased to values that allow the comparison with the inviscid solution (computed
using another wode, based on potential theory in the complex plane) to be carried out.

Over a flat topography, it is found that both the free-surface and bed boundary layers are sufficiently well-behaved as to
not perturb the bulk irrotational flow. Water being characterised by a relatively small viscosity, the consequence is that, in
this regime the inviscid models accurately describe the oceanic flow. We do not prove this assertion rigorously, however.
Difficulties seem to arise, however, when a non-flat topography is considered. Indeed, the typical velocities associated
with the wave are high enough to eventually trigger boundary layer separation near curved-enough portions of the bed,
resulting in vorticity being shed in the initially irrotational flow, far from the topography. The convergence to the inviscid
solution is therefore compromised.

KEYWORDS

Water Waves, Wave Breaking, Finite element Method, Mathematical Modelling

RESUME

Dans un premier temps, nous allons introduire un ensemble d'équations a dérivées partielles qui décrivent I'évolution de
la surface libre de l'océan, I'eau étant considérée comme non-visqueuse, le tourbillon étant supposé évanescent et I'air
étant complétement négligé. Ces équations, que nous nous proposons d'appeler équations des vagues déferlantes, sont
obtenues formellement a partir de principes physiques généraux (description continue de la matiére, densité homogéne
et uniforme de l'eau, etc.). La structure hamiltonienne non-canonique de ce systéme sera par la suite explicitée. Nous
montrerons aussi que, en l'absence de déferlement, elles se réduisent a une formulation bien-connue du probléme, dite
de Zakharov, Craig et Sulem.

Pour arriver a ce systéme d'équations, deux hypothéses importantes doivent étre réalisées : négliger la viscosité et
supposer un tourbillon nul. La seconde partie de ce travail consistera en une discussion de ces derniéres. Pour cela, nous
adopterons une approche numérique permettant d'approximer la solution des équations de Navier--Stokes a surface libre.
Le schéma mis au point differe de ceux qu'il est coutume d'utiliser pour ce probléme. En effet il met en ceuvre la méthode
Lagrangien--Eulerien Arbitraire (ALE) pour I'advection et la discrétisation est réalisée par la Méthode des Eléments Finis
(FEM).

Ce schéma numérique sera d'abord utilisé pour étudier la couche limite apparaissant sous l'interface eau--vide, lorsque
le fond de l'eau est plat. Il nous sera alors possible de conclure que le tourbillon ainsi généré n'empéche nullement la
solution de faible viscosité de converger vers la solution irrotationnelle de I'équation d'Euler, étant donné que son support
devient arbitrairement petit.

Par contre, I'étude de topographies non-plate mettra en lumiére un phénomene physique absent du systeme limite : le
décollement de la couche limite présente au fond de I'eau. En effet, il peut arriver que I'écoulement irrotationnel associé
au passage d'un train d'onde d'amplitude finie ait une vélocité suffisamment importante pour venir arracher des tourbillons
des régions de forte courbure et les transporter jusqu'a proximité immédiate de la surface. Ce phénoméne ne semble pas
disparaitre dans la limite de viscosité évanescente et contrecarre, de ce fait, la convergence vers la solution irrotationnelle.

MOTS CLES

Vagues océaniques, Déferlement, Eléments finis, Modélisation mathématique
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